
On Generalized Schur Numbers

Tanbir Ahmed
Department of Computer Science and Software Engineering

Concordia University, Montréal, Canada
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Abstract

Let L(t) represent the equation x1 + x2 + · · · + xt−1 = xt. For k > 1, 0 6 i 6 k − 1, and
ti > 3, the generalized Schur number S(k; t0, t1, . . . , tk−1) is the least positive integer m such
that for every k-colouring of {1, 2, . . . ,m}, there exists an i ∈ {0, 1, . . . , k − 1} such that there
exists a solution to L(ti) that is monochromatic in colour i. In this paper, we report twenty-six
previously unknown values of S(k; t0, t1, . . . , tk−1) and conjecture that for 4 6 t0 6 t1 6 t2,
S(3; t0, t1, t2) = t2t1t0 − t2t1 − t2 − 1.

1 Introduction

For integers a and b, let [a, b] denote the interval {x : a 6 x 6 b}. The Schur number S(k) is the
smallest positive integer n such that for every 2-colouring of [1, n], there is a monochromatic solution
to x + y = z with y > x. Schur [13] proved that S(k) is finite. Let L(t) represent the equation
x1 + x2 + · · · + xt−1 = xt. For k > 1, 0 6 i 6 k − 1, and ti > 3, the generalized Schur number
S(k; t0, t1, . . . , tk−1) is the least positive integer m such that for every k-colouring of [1,m], there
exists an i ∈ {0, 1, . . . , k − 1} such that there exists a solution to L(ti) that is monochromatic in
colour i. The generalized diagonal Schur number S(k, t) equals S(k; t0, t1, . . . , tk−1) where t0 =
t1 = · · · = tk−1 = t. If the values of ti are not all equal, then S(k; t0, t1, . . . , tk−1) is called the
generalized off-diagonal Schur number. This name refers to the similarity with the off-diagonal
Ramsey numbers. Also, S(k) equals S(k, 3) = S(k; 3, 3, . . . , 3). For different variations, results,
and references, see Schaal [11], Bialostocki and Schaal [4], Fredricksen and Sweet [6], Landman and
Robertson [8], Martinelli and Schaal [9], Schaal and Snevily [12], Kézdy et. al [7], and Ahmed et al.
[2].

It is known that S(2, 3) = 5, S(3, 3) = 14, and S(4, 3) = 45. Beutelspacher and Brestovansky [3]
determined S(2; t, t) = t2 − t− 1 and Robertson and Schaal [10]) proved for s, t > 3,

S(2; s, t) =

 3t− 4, if s = 3 and t ≡ 1 (mod 2);
3t− 5, if s = 3 and t ≡ 0 (mod 2);
st− t− 1 if 4 6 s 6 t.

The known lower bound for generalized diagonal Schur numbers is

S(k, t) >
tk+1 − 2tk + 1

t− 1
= tk − tk−1 − tk−2 − · · · − t− 1.
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An interesting open problem is to compute the exact value of S(5, 3). The current lower bound
S(5, 3) > 161 (Exoo [5]) is almost twenty years old. Many numbers in the general form are yet
unknown. In this paper, we report twenty-six previously unknown values of S(k; t0, t1, . . . , tk−1)
including three generalized diagonal Schur numbers. Based on experiemental data, we conjecture
that for 4 6 t0 6 t1 6 t2, S(3; t0, t1, t2) = t2t1t0 − t2t1 − t2 − 1.

2 Some new generalized Schur numbers

Let f : {1, 2, . . . , n} → {0, 1, . . . , k − 1} denote a colouring of the numbers 1, 2, . . . , n with the k
colours 0, 1, . . . , k − 1. A colouring is valid with respect to the Schur number S(k; t0, t1, . . . , tk−1)
if there exists no solution to L(ti) monochromatic in colour i for any i ∈ {0, 1, . . . , k − 1} under f .
The existence of a valid colouring of [1, n] proves that S(k; t0, t1, . . . , tk−1) > n.

2.1 Computer assisted results

In this section, we report some new generalized Schur numbers with enumeration of all valid colour-
ings for each number. The valid colourings are determined using exhaustive computer search algo-
rithms.

Theorem 2.1. S(3; 3, 3, 4) = 23.

Proof. The eighteen valid colourings of [1, 22] are

(a) 01102021a2222b12020110 where (a, b) ∈ {0, 1, 2}2, and

(b) The nine colourings obtained from (a) using the permutation (0, 1)(2).

In (a):
If f(23) = 0, then there is a solution 1 + 22 = 23 with colour 0.
If f(23) = 1, then there is a solution 2 + 21 = 23 with colour 1.
If f(23) = 2, then there is a solution 5 + 5 + 13 = 23 with colour 2.

Similarly, the colourings in (b) cannot be extended. Hence, S(3; 3, 3, 4) 6 23.

Theorem 2.2. S(3; 3, 3, 5) = 32.

Proof. The fifty-four valid colourings of [1, 31] are

(a) 0120201202a1222b2221c2021020120 where (a, b, c) ∈ {0, 1, 2}3, and

(b) The twenty-seven colourings obtained from (a) using the permutation (0, 1)(2).

In (a):
If f(32) = 0, then there is a solution 1 + 31 = 32 with colour 0.
If f(32) = 1, then there is a solution 2 + 30 = 32 with colour 1.
If f(32) = 2, then there is a solution 5 + 5 + 5 + 17 = 32 with colour 2.
Similarly, the colourings in (b) cannot be extended. Hence, S(3; 3, 3, 5) 6 32.

Theorem 2.3. S(3; 3, 3, 6) = 41.

Proof. The one hundred and sixty-two valid colourings of [1, 40] are

(a) 011020112201a2202b2222c2022d102211020110 where (a, b, c, d) ∈ {0, 1, 2}4; and

(b) the eighty-one colourings obtained from (a) using the permutation (0, 1)(2).
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In (a):
If f(41) = 0, then there is a solution 1 + 40 = 41 with colour 0.
If f(41) = 1, then there is a solution 2 + 39 = 41 with colour 1.
If f(41) = 2, then there is a solution 5 + 5 + 5 + 5 + 21 = 41 with colour 2.
Similarly, the colourings in (b) cannot be extended. Hence, S(3; 3, 3, 6) 6 41.

Theorem 2.4. S(3; 3, 3, 7) = 49.

Proof. The eight hundred and forty-six valid colourings of [1, 48] are

(a) 0110201102211022a2022b2222c220de2201f22011020110 with (a, b, c) ∈ {0, 1, 2}3 and

(d, e, f) ∈{(1, 0, 1), (1, 0, 2), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 0, 1), (2, 0, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)};

(b) 01020102a10212021231221122b23c202d201e201f2010 with (a, b, c, d, e, f) ∈ {0, 1}6;

(c) 01020102a10202021231221122123b202c201d201e2010 with (a, b, c, d, e) ∈ {0, 1}5;

(d) 01020102110212021231221022123120a12011201b2010 with (a, b) ∈ {(1, 0), (2, 0), (2, 1)}; and

(e) the four hundred and twenty-three colourings obtained from (a) − (d) using the permutation
(0, 1)(2).

In (a)− (d):
If f(49) = 0, then there is a solution 1 + 48 = 49 with colour 0.
If f(49) = 1, then there is a solution 2 + 47 = 49 with colour 1.

In (b)− (d):
If f(49) = 2, then there is a solution 4 + 4 + 4 + 4 + 4 + 29 = 49 with colour 2;

In (a):
If f(49) = 2, then there is a solution 5 + 5 + 5 + 5 + 5 + 24 = 49 with colour 2;
Similarly, the colourings in (e) cannot be extended. Hence, S(3; 3, 3, 7) 6 49.

Theorem 2.5. S(3; 3, 4, 4) = 31.

Proof. The eight valid colourings of [1, 30], any one of which proves that S(3; 3, 4, 4) > 31 are

(a) 0101020202121222212a2020201010 with a ∈ {0, 1};

(b) 011110202022222222220202011a10 with a ∈ {0, 1}; and

(c) the 4 colourings obtained from (a) and (b) using the permutation (0)(1, 2).

In (a) and (b):
If f(31) = 0, then there is a solution 1 + 30 = 31 with colour 0.
If f(31) = 1, then there is a solution 2 + 2 + 27 = 31 with colour 1.
If f(31) = 2, then there is a solution 6 + 6 + 19 = 31 with colour 2.
Similarly, the four (4) colourings in (c) cannot be extended. Hence, S(3; 3, 4, 4) 6 31.

Theorem 2.6. S(3; 3, 4, 5) = 47.

Proof. The only valid colouring of [1, 46] is

020240201010118010102024020.

If f(47) = 0, then there is a solution 1 + 46 = 47 with colour 0.
If f(47) = 1, then there is a solution 11 + 13 + 23 = 47 with colour 1.
If f(47) = 2, then there is a solution 2 + 2 + 2 + 41 = 47 with colour 2.
Hence, S(3; 3, 4, 5) 6 47.
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Theorem 2.7. S(3; 3, 5, 5) = 58.

Proof. The one hundred and twelve valid colourings of [1, 57] are

(a) 01014010202021202a2b2c210020201014010 with (a, b, c) ∈ {0, 2}3;

(b) 01014010202021402a2b2c28020201014010 with (a, b, c) ∈ {0, 2}3;

(c) 01014010202021602a2b2c26020201014010 with (a, b, c) ∈ {0, 2}3;

(d) 010140102020218a2b2c2d24020201014010 with (a, b, c, d) ∈ {0, 2}4;

(e) 0101401020202402a213b2c2d24020201014010 with

(a, b, c, d) ∈{(0, 2, 0, 0), (0, 2, 0, 2), (0, 2, 2, 0), (0, 2, 2, 2),

(2, 0, 0, 0), (2, 0, 0, 2), (2, 0, 2, 0), (2, 0, 2, 2)};

(f) 01014010202024a2b21322c2d24020201014010 with

(a, b, c, d) ∈{(0, 2, 0, 0), (0, 2, 0, 2), (0, 2, 2, 0), (0, 2, 2, 2),

(2, 0, 0, 0), (2, 0, 0, 2), (2, 0, 2, 0), (2, 0, 2, 2)};

(g) the fifty-six colourings obtained from (a)− (f) using the permutation (0)(1, 2).

In each of (a), (b), . . . , (f):
If f(58) = 0, then there is a solution 1 + 57 = 58 with colour 0.
If f(58) = 1, then there is a solution 2 + 2 + 2 + 52 = 58 with colour 1.
If f(58) = 2, then there is a solution 11 + 11 + 11 + 25 = 58 with colour 2.
Similarly, the colourings in (g) also cannot be extended. Hence, S(3; 3, 5, 5) 6 58.

Theorem 2.8. S(3; 4, 4, 4) = 43.

Proof. The ninety-six valid colourings of [1, 42] are

(a) 02160226ab26cd26021602 where (a, b, c, d) ∈ {0, 2}4; and

(b) the eighty colourings obtained from (a) using the permutations (0)(1, 2), (0, 1)(2), (0, 1, 2),
(0, 2, 1), and (0, 2)(1).

In (a):
If f(43) = 0, then we have a solution 1 + 1 + 41 = 43 with colour 0.
If f(43) = 1, then we have a solution 3 + 3 + 35 = 43 with colour 1.
If f(43) = 2, then we have a solution 11 + 11 + 21 = 43 with colour 2.
So, the colouring cannot be extended. Similarly, the other cases also cannot be extended. Hence,

S(3; 4, 4, 4) 6 43.

Theorem 2.9. S(3; 4, 4, 5) = 54.

Proof. The three thousand five hundred and eighty-four valid colourings of [1, 53] are

(a) 02160225a26b2cdefg2h25ijk24021602 with a, b, h ∈ {0, 2}, (c, d, e, f, g) ∈ {1, 2}5, and (i, j, k) ∈
{(0, 0, 2), (0, 2, 2), (2, 0, 0), (2, 0, 2), (2, 2, 0), (2, 2, 2)} (1536 solutions);

(b) 021602212a2bcdef2g25hi25021602 with a, g ∈ {0, 2}, (b, c, d, e, f) ∈ {1, 2}5, and

(h, i) ∈ {(0, 0), (0, 2)} (256 solutions); and
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(c) the one thousand seven hundred and ninety-two colourings obtained from (a) and (b) with the
permutation (0, 1)(2).

In both (a) and (b):
If f(54) = 0, then there is a solution 1 + 1 + 52 = 54 with colour 0.
If f(54) = 1, then there is a solution 3 + 3 + 48 = 54 with colour 1.
If f(54) = 2, then there is a solution 11 + 11 + 11 + 21 = 54 with colour 2.
Similarly, the other one thousand seven hundred and ninety-two solutions cannot be extended.

Hence, S(3; 4, 4, 5) 6 54.

Theorem 2.10. S(3; 4, 5, 5) = 69.

Proof. The nine thousand four hundred and eighty-eight valid colourings of [1, 68] are

(a) 0214x140224a24bc24d24ef24g24hi24j240214y1402 with (a, b, c, d, e, f, g, h, i, j) ∈ {0, 2}10 and

(x, y) ∈ {0, 1}2 (4096 colourings);

(b) 0214x140224a24b25c24d25e24f240g240214y1402 with (a, b, c, d, e, f, g) ∈ {0, 1}7 and (x, y) ∈
{0, 1}2 (512 colourings);

(c) 021902210024a25b24c25d028021902 with (a, b, c, d) ∈ {0, 2}4 (16 colourings);

(d) 02190226ab27c210d27ef26021902 with (c, d, e, f) ∈ {0, 2}4 and (a, b) ∈ {00, 02, 20} (48 colour-
ings);

(e) 021902215a210b27cd26021902 with (a, b) ∈ {0, 2}2 and (c, d) ∈ {00, 02, 20} (12 colourings);

(f) 021902215a25b24c25d028021902 with (a, b, c, d) ∈ {0, 2}4 (16 colourings);

(g) 0219022602218a28bcd24021902 with a ∈ {0, 2} and (b, c, d) ∈ {(0, 0, 2), (2, 0, 0), (2, 0, 2), (2, 2, 0)}
(8 colourings);

(h) 02190226ab227cde240214f1402 with (a, b) ∈ {(0, 0), (2, 0)} and

(c, d, e, f) ∈{(0, 0, 2, 1), (2, 0, 0, 0), (2, 0, 0, 1), (2, 0, 2, 0),

(2, 0, 2, 1), (2, 2, 0, 0), (2, 2, 0, 1), (2, 2, 2, 0)}
(16 colourings);

(i) 021902215a210b26cdef25021902 with (a, b) ∈ {0, 2}2 and (c, d, e, f) ∈ {(0, 0, 2, 2), (2, 2, 0, 0)} (8
colourings);

(j) 02190227027a210b28cde24021902 with

(a, b, c, d, e) ∈{(0, 0, 0, 0, 2), (0, 0, 2, 0, 2), (0, 2, 0, 0, 2), (0, 2, 2, 0, 2),

(2, 0, 0, 0, 2), (2, 0, 2, 0, 0), (2, 0, 2, 0, 2), (2, 0, 2, 2, 0)}
(8 colourings);

(k) 021902260219028abc24021902 with (a, b, c) ∈ {(0, 0, 2), (2, 0, 0), (2, 0, 2), (2, 2, 0)} (4 colourings);

(l) the four thousand seven hundred and forty-four colourings obtained from (a) − (k) with the
permutation (0)(1, 2).

In each of (a), (b), . . . , (k):
If f(69) = 0, then there is a solution 1 + 1 + 67 = 69 with colour 0.
If f(69) = 1, then there is a solution 3 + 3 + 3 + 60 = 69 with colour 1.
If f(69) = 2, then there is a solution 14 + 14 + 14 + 27 = 69 with colour 2.

Similarly, the other four thousand seven hundred and forty-four solutions cannot be extended. Hence,
S(3; 4, 5, 5) 6 69.
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2.2 Computer generated results

In this section, for each generalized Schur number n = S(k, t0, t1, . . . , tk−1), we provide a single
valid colouring of [1, n − 1] as a proof of the lower bound S(k, t0, t1, . . . , tk−1) > n. To determine
exactness, we use complete SAT solvers, where we construct an SAT instance of the Schur problem
in such a way that the SAT instance corresponding to k, t0, t1, . . . , tk−1 and m is satisfiable if and
only if S(k, t0, t1, . . . , tk−1) > m. For an introduction to the SAT problem and ideas for encoding
similar problems to SAT, see Ahmed [1].

• S(3; 3, 4, 6) = 49: 0(10)2(20)5142101(10)2(20)5(10)2.

• S(3; 3, 4, 7) = 59: 0(10)2(20)410(20)2(21)2(12)225121221(20)310(20)4(10)2.

• S(3; 3, 5, 6) = 70: 02026020(10)31180150180(10)32026020.

• S(3; 3, 5, 7) = 80: 01014010(20)2240(20)22802512132502170(20)21014010.

• S(3; 3, 6, 6) = 85: 0(10)4(20)9(21)4214(12)30(20)10(10)4.

• S(3; 3, 6, 7) = 107: 0(20)2260(20)2(10)31180170160(10)21301200(10)3(20)2260(20)2.

• S(3; 4, 4, 6) = 65: 12061221312250120212127120612.

• S(3; 4, 4, 7) = 76: 02160227027028013219027021602.

• S(3; 4, 5, 6) = 83: 021902260249021902.

• S(3; 4, 5, 7) = 97: 021902240250290250240221280240240225024024021902.

• S(3; 4, 6, 6) = 101: 0211202280223602210211202.

• S(3; 5, 5, 5) = 94: 03112032120321203212032120311203.

• S(3; 5, 5, 6) = 113: 0311203264022100311203.

• S(3; 6, 6, 6) = 173: 0412004220042200422004220042200412004.

• S(4; 3, 3, 3, 4) = 77: 01202501203012022032032035231234123235032022122012030120220220120.

• S(4; 3, 3, 3, 5) = 107:

1202122102213120212310221310201231035023410332322330132

13201313201321020131202132102213120212210221.

2.3 A lower bound for the generalized off-diagonal Schur numbers

Theorem 2.11. For all k > 1 and for all t0, t1, . . . , tk−1 where 3 6 t0 6 t1 6 · · · 6 tk−1,

S(k; t0, t1, . . . , tk−1) >
k−1∏
j=0

tj −
k−1∑
i=1

k−1∏
j=i

tj − 1.

Proof. We will use induction on k. When k = 1, it is clear that S(1; t0) = t0 − 1. Let k0 > 1 be
given and assume that the theorem is true for k0. We will show that the theorem is true for k0 + 1.
That is, we let t0 6 t1 6 · · · 6 tk0

be given and assume that

S(k0; t0, t1, . . . , tk0−1) >
k0−1∏
j=0

tj −
k0−1∑
i=1

k0−1∏
j=i

tj − 1.
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and we will show that

S(k0 + 1; t0, t1, . . . , tk0
) > tk0

(S(k0 : t0, t1, . . . , tk0−1))− 1

> tk0

k0−1∏
j=0

tj −
k0−1∑
i=1

k0−1∏
j=i

tj − 1

− 1

=

k0∏
j=0

tj −
k0∑
i=1

k0∏
j=i

tj − 1

For ease of notation, let S(k0; t0, t1, . . . , tk0−1) = Θ. We must exhibit a colouring

∆ : {1, 2, . . . , tk0
·Θ− 2} → {0, 1, . . . , k0}

that avoids solutions to L(ti) that are monochromatic in colour i for every i ∈ {0, 1, . . . , k0}. From the
definition of S(k0; t0, t1, . . . , tk0−1), there exists a colouring C : {1, 2, . . . ,Θ− 1} → {0, 1, . . . , k0− 1}
that avoids solutions to L(ti) that are monochromatic in colour i for every i ∈ {0, 1, . . . , k0 − 1}.
Let ∆ be defined by

∆(x) =

 C(x), if 1 6 x 6 Θ− 1;
k0, if Θ 6 x 6 (tk0

− 1) Θ− 1;
C(x− (tk0

− 1) Θ + 1), if (tk0
− 1) Θ 6 x 6 tk0

Θ− 2.

Clearly, ∆ avoids solutions to L(tk0
) that are monochromatic in colour k0. To show that ∆

avoids solutions to L(ti) that are monochromatic in colour i where i ∈ {0, 1, . . . , k0 − 1}, we will
consider three cases. Let i ∈ {0, 1, . . . , k0 − 1} be given and let (x1, x2, . . . , xti) be a solution to
L(ti) where xj ∈ {1, 2, . . . , tk0

Θ− 2} for all j ∈ {1, 2, . . . , ti}. Clearly, no more than one integer in
the set {x1, x2, . . . , xti−1} may be greater than (tk0

− 1) Θ− 1.
Case 1: Assume that xj ∈ {1, 2, . . . ,Θ − 1} for every j ∈ {1, 2, . . . , ti}. From the definition of

the colouring C, it follows that (x1, x2, . . . , xti) is not monochromatic in colour i.
Case 2: Assume that xj ∈ {1, 2, . . . ,Θ− 1} for every j ∈ {1, 2, . . . , ti− 1} and xti > Θ. We have

that xti = x1 + x2 + · · ·+ xti−1 6 (ti − 1)(Θ− 1) < (tk0
− 1) Θ since ti 6 tk0

. So ∆(xti) = k0 and
(x1, x2, . . . , xti) is not monochromatic in colour i.

Case 3: Assume there exists a j ∈ {1, 2, . . . , ti − 1} such that xj > Θ. If ∆(xj) = k0, then
clearly (x1, x2, . . . , xti) is not monochromatic in colour i, so we may assume that xj > (tk0 − 1) Θ.
Without loss of generality we may assume that

x1, x2, . . . , xti−2 ∈ {1, 2, . . . ,Θ− 1}
and

xti−1, xti ∈ {(tk0
− 1) Θ, (tk0

− 1) Θ +1, . . . , tk0
Θ− 2}.

Now, let y1 = xti−1 − (tk0 − 1) Θ + 1 and y2 = xti − (tk0 − 1) Θ + 1. Note that
y1, y2 ∈ {1, 2, . . . ,Θ− 1},

∆(y1) = ∆(xti−1) and ∆(y2) = ∆(xti)
and that (x1, x2, . . . , xti−2, y1, y2) is a solution to L(ti). From the definition of the coloring

C, it follows that (x1, x2, . . . , xti−2, y1, y2) is not monochromatic in colour i, so it follows that
(x1, x2, . . . , xti) is also not monochromatic in colour i.

When t0 = t1 = · · · = tk−1 = t, Theorem 2.11 simplifies to

S(k, t) >
tk+1 − 2tk + 1

t − 1
= tk − tk−1 − tk−2 − · · · − t− 1.

Table 1 gives all known Schur numbers (and, for one case, the best known lower bound). New
values are marked with *.
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Known Value Lower Bound Value - Lower Bound
S(3; 3, 3, 3) = S(3, 3) = S(3) 14 14 0
S(3; 3, 3, 4) 23∗ 19 4
S(3; 3, 3, 5) 32∗ 24 8
S(3; 3, 3, 6) 41∗ 29 12
S(3; 3, 3, 7) 49∗ 34 15
S(3; 3, 4, 4) 31∗ 27 4
S(3; 3, 4, 5) 47∗ 34 13
S(3; 3, 4, 6) 49∗ 41 8
S(3; 3, 4, 7) 59∗ 48 11
S(3; 3, 5, 5) 58∗ 44 14
S(3; 3, 5, 6) 70∗ 53 17
S(3; 3, 5, 7) 80∗ 62 18
S(3; 3, 6, 6) 85∗ 65 20
S(3; 3, 6, 7) 107∗ 76 31
S(3; 4, 4, 4) = S(3, 4) 43∗ 43 0
S(3; 4, 4, 5) 54∗ 54 0
S(3; 4, 4, 6) 65∗ 65 0
S(3; 4, 4, 7) 76∗ 76 0
S(3; 4, 5, 5) 69∗ 69 0
S(3; 4, 5, 6) 83∗ 83 0
S(3; 4, 5, 7) 97∗ 97 0
S(3; 4, 6, 6) 101∗ 101 0
S(3; 5, 5, 5) = S(3, 5) 94∗ 94 0
S(3; 5, 5, 6) 113∗ 113 0
S(3; 6, 6, 6) = S(3, 6) 173∗ 173 0
S(4; 3, 3, 3, 3) 45 41 4
S(4; 3, 3, 3, 4) 77∗ 55 22
S(4; 3, 3, 3, 5) 107∗ 69 38
S(5; 3, 3, 3, 3, 3) = S(5, 3) = S(5) > 161 122 > 39

Table 1: Known Schur Numbers and lower bounds from Theorem
2.11.

Based on the computed values and bounds, and Theorem 2.11, we propose the following conjec-
tures:

Conjecture 2.1. For 4 6 s 6 t 6 u,

S(3; s, t, u) = stu− tu− u− 1.

Conjecture 2.2. For 3 = t < u and 3 < t 6 u

S(3; 3, t, u) > 3tu− tu− u− 1.

It can be observed that the above conjectures are similar to the theorem for S(2; s, t) given by
Robertson and Schaal [10].

2.4 Valid colourings for S(3, t)

For t > 4, there are at least (3!) · 2(t−2)2 valid colourings as follows:
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(a) 0t−21t
2−3t+20t−2

(
2t

2−3t+2 {0, 2}t−2
)t−2

2t
2−3t+20t−21t

2−3t+20t−2,

In colour 0, we have the monochromatic solution

1 · (t− 2) + (t3 − t2 + 1) = t3 − t2 − t− 1.

Note that the integers having colour 1 are [t−1, t2−2t] (say A), and [t3−2t2+t−1, t3−t2−2t]
(say B). Hence, in colour 1, we have a monochromatic solution

(t− 1) · (t− 2) + (t3 − 2t2 + 2t− 3) = t3 − t2 − t− 1,

using the fact that t− 1 = min(A) and since for t > 4,

min(B) = t3 − 2t2 + t− 1 < t3 − 2t2 + 2t− 3

= t3 − t2 − 2t− (t2 − 4t + 3)

< t3 − t2 − 2t = max(B).

Note that for i = 0, 1, . . . , t−3, the integers that are coloured 2 are [(i+ 1)(t2−2t) + t−1, (i+
2)(t2 − 2t)] (say Ai). Then we have a monochromatic solution

(t− 2) · (t2 − t− 1) + (2t2 − 2t− 3) = t3 − t2 − t− 1,

using the fact that t2 − t− 1 = min(A0) and since for t > 4,

min(A1) = 2t2 − 3t− 1 < 2t2 − 2t− 3 < 3t2 − 6t = max(A1).

(b) 5·2(t−2)2 more colourings obtained from (a) using the permutations (0)(1, 2), (0, 1)(2), (0, 1, 2),
(0, 2, 1), and (0, 2)(1). As in (a), these colourings also cannot be extended.

We do not know, in general, if there are valid colourings of [1, n−1] other than the ones discussed
above that could be extended.
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[7] A. E. Kézdy, H. Snevily, and C. S. White, Generalized Schur numbers for x1 + x2 + c = 3x3,
Electron. J. Combin., 16(1) (2009), R105, 13 pp.

[8] B. Landman and A. Robertson, Ramsey Theory on the Integers, Student mathematical library,
American Mathematical Society, Providence, RI, 2004.

[9] B. Martinelli, D. Schaal, On generalized Schur numbers for x1 + x2 + c = kx3, Ars Combin., 85
(2007), 33–42.

[10] A. Robertson, D. Schaal, Off-Diagonal Generalized Schur Numbers, Advances in Applied Math-
ematics, 26(3) (2001), 252–257.

[11] D. Schaal, On generalized Schur numbers, Congr. Numer., 98 (1993), 178–187.

[12] D. Schaal, H. Snevily, A multiplicity problem related to Schur numbers, Integers, 8 (2008),
#A26, 7 pp.

[13] I. Schur. Uber die Kongruenz xm + ym ≡ zm (mod p). Jahresber. Deutsch. Math.-Verin., 25
(1916), 114–116.

10


	Introduction
	Some new generalized Schur numbers
	Computer assisted results
	Computer generated results
	A lower bound for the generalized off-diagonal Schur numbers
	Valid colourings for S(3,t)


