The α-labeling number of comets is 2

Tanbir Ahmed
Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada
ta_ahmed@cs.concordia.ca
Hunter Snevily*
Department of Mathematics
University of Idaho - Moscow, Idaho, USA

Abstract

We investigate the claim that for every tree T (with m edges), there exists an α-labeling of T, or else there exists a graph H_{T} with an α-labeling such that H_{T} can be decomposed into two edge-disjoint copies of T. We prove that the above claim is true for comets $\mathcal{C}_{m, 2}$. This is particularly noteworthy since comets $\mathcal{C}_{m, 2}$ are known to have arbitrarily large α-deficits.

1 Introduction

Given a graph G, an injective function $f: V(G) \rightarrow \mathbb{N}$ is called a vertex labeling, or a vertex numbering of G. Such a function f on a graph G with m edges is known as a graceful-labeling if f is an injection from $V(G)$ to the set $\{0,1, \ldots, m\}$ such that the values $|f(x)-f(y)|$ for all m pairs of adjacent vertices x, y are distinct. A labeling f is bipartite if there exists an integer λ so that for each edge $x y$ either $f(x) \leqslant \lambda<f(y)$ or $f(y) \leqslant \lambda<f(x)$. A labeling f is an α-labeling if it is graceful and bipartite.

Clearly, if G has an α-labeling, then G must be bipartite. Suppose G is bipartite with m edges and degree-sequence $d_{1}, d_{2}, \ldots, d_{n}$. Wu [G] showed that the necessary condition for G having an α-labeling is

$$
\operatorname{gcd}\left(d_{1}, d_{2}, \ldots, d_{n}, m\right) \left\lvert\,\binom{ m}{2}\right.
$$

[^0]The following theorem is a classical result on α-labeling of graphs.
Theorem 1 (Rosa [4]). Let G be a graph with m edges, and let G have an α-labeling. Then the complete graph $K_{2 p m+1}$ can be decomposed into isomorphic copies of G, where p is an arbitrary positive integer.

Snevily [[$]$ introduced the following graph parameter motivated by Rosa's result:

A bipartite graph G with m edges eventually has an α-labeling if there exists a graph H with $t \cdot m$ edges (where t is a positive integer), such that H has an α-labeling and can be decomposed into edge-disjoint copies of G. Such a graph H is called the host graph of G.

Suppose G is a bipartite graph that eventually has an α-labeling; then the α-labeling number of G, denoted G_{α} is defined as follows:

$$
G_{\alpha}=\min \{t: \exists \text { a host graph } H \text { such that }|E(H)|=t \cdot m\}
$$

Snevily [$\mathbb{Z}]$ conjectured that for every bipartite graph $G, G_{\alpha}<\infty$, which was later proved by El-Zanati, Fu and Shiue [Z]. There are no known examples of a graph G with $G_{\alpha}>2$ (See Gallian [3]). Snevily also conjectured that for a tree T with m edges, $T_{\alpha} \leqslant m$. Shiue and Fu [6] proved that α-labeling number for a tree with m edges and radius r is at most $\lceil r / 2\rceil m$. They also prove that a tree with m edges and radius r decomposes K_{t} for some $t \leqslant(r+1) m^{2}+1$.

In this paper, we conjecture the following:
Conjecture 1. For any tree T,

$$
T_{\alpha} \leqslant 2
$$

For a tree T, the α-deficit $\alpha_{d e f}(T)$ equals $m-\alpha(T)$, where $\alpha(T)$ is defined as the maximum number of distinct edge labels over all bipartite labelings of T.

Observation 1 ([$[8])$. Let $G=(X, Y)$ be a bipartite graph with m edges and consider the graph $r G$ consisting of r disjoint copies of G. Suppose there exists a labeling function

$$
h: V(r G) \rightarrow\{0,1,2, \ldots, r m\}
$$

such that
(i) the labels assigned to the vertices in any single copy of G (in $r G$) are distinct,
(ii) if $(x, y) \in E(r G)$, then the value $|h(x)-h(y)|$ is assigned to the edge (x, y), and no other edge in $E(r G)$,
（iii）there exists some real number λ_{h} such that if $G_{i}=\left(X_{i}, Y_{i}\right)$ is some copy of G in $r G$ then

$$
\max \left\{h(x): x \in X_{i}\right\} \leqslant \lambda_{h}<\min \left\{h(y): y \in Y_{i}\right\}
$$

or else

$$
\max \left\{h(y): y \in Y_{i}\right\} \leqslant \lambda_{h}<\min \left\{h(x): x \in X_{i}\right\}
$$

Let

$$
S=\left\{x: x \in V(r G) \text { and } h(x) \leqslant \lambda_{h}\right\}
$$

and

$$
T=\left\{y: y \in V(r G) \text { and } h(y)>\lambda_{h}\right\}
$$

Clearly，S and T are independent sets．Now we can take the labeled version of $r G$ and create a new graph H by identifying vertices（from different copies of G ）with the same label．Hence H is a bipartite graph with $|E(H)|=r m$ ， and that H has α－labeling．Clearly H is a host graph of G ．

2α－labeling number of comets

The comet $\mathcal{C}_{m, k}$ is obtained from the star $K_{1, m}$ by replacing each edge in $K_{1, m}$ with a path of length k ．Rosa and Širáň［5］showed that for every $m \geqslant 1$ ，

$$
\alpha_{d e f}\left(\mathcal{C}_{m, 2}\right)=\lfloor m / 3\rfloor,
$$

which implies that $\left(\mathcal{C}_{m, 2}\right)_{\alpha} \geqslant 2$ for $m \geqslant 3$ ．
Let $\mathcal{C}_{m, j}^{\prime}$ be a comet－like tree with a central vertex of degree m ，and each neighbour of the central vertex is attached to j pendant vertices where $j \geqslant 1$ ．Here， $\mathcal{C}_{m, 2}=\mathcal{C}_{m, 1}^{\prime}$ ．

2．1 Construction for $\left(\mathcal{C}_{m, j}^{\prime}\right)_{\alpha}$ where $m \geqslant 3$ and $j \geqslant 1$

Comet $\mathcal{C}_{m, j}^{\prime}$ has $1+m+m j$ vertices and $m+m j$ edges．We construct a graph $2 \mathcal{C}_{m, j}^{\prime}$ with $2 m(j+1)$ edges that has an α－labeling and can be decomposed into two edge－disjoint copies isomorphic to $\mathcal{C}_{m, j}^{\prime}$ ．

We start with two disjoint copies C_{1} and C_{2} of $\mathcal{C}_{m, j}^{\prime}$ and then we utilize Observation ⿴囗丨 ．Note that there are three types of vertices in $\mathcal{C}_{m, j}^{\prime}$ ：one central vertex of degree m, m vertices of degree $j+1$ ，and $m j$ pendant vertices．

Let the central vertices in C_{1} and C_{2} be x_{0} and y_{0} ，respectively．Let the degree－$(j+1)$ vertices in C_{1} and C_{2} be $x_{1}, x_{2}, \ldots, x_{m}$ and $y_{1}, y_{2}, \ldots, y_{m}$ ，
respectively. Let in C_{1}, the pendant vertices attached to x_{i} with $1 \leqslant i \leqslant m$ be

$$
x_{m+(i-1) j+1}, x_{m+(i-1) j+2}, \ldots, x_{m+(i-1) j+j}
$$

and in C_{2}, the pendant vertices attached to y_{i} with $1 \leqslant i \leqslant m$ be

$$
y_{m+(i-1) j+1}, y_{m+(i-1) j+2}, \ldots, y_{m+(i-1) j+j} .
$$

We define a labeling function

$$
h:\left\{x_{0}, x_{1}, \ldots, x_{m+m j}, y_{0}, y_{1}, \ldots, y_{m+m j}\right\} \rightarrow\{0,1,2, \ldots, 2 m+2 m j\}
$$

Label x_{0} and y_{0} as 0 and $2 m j+m$, respectively. The vertices $x_{1}, x_{2}, \ldots, x_{m}$ in C_{1} and $y_{1}, y_{2}, \ldots, y_{m}$ in C_{2} share m labels in common, which are

$$
2 m j+m+1,2 m j+m+2,2 m j+m+3, \ldots, 2 m j+2 m
$$

in the same order from left to right for the indices $i=1,2, \ldots, m$.
Now, for the k-th pendant vertex attached to x_{i} and y_{i} for $i=1,2, \ldots, m$, set
(i) m odd:

$$
\begin{aligned}
h\left(x_{m+(i-1) j+k}\right) & =(2 i-1)+(k-1) m, \text { and } \\
h\left(y_{m+(i-1) j+k}\right) & =h\left(x_{m+(i-1) j+k}\right)+m j .
\end{aligned}
$$

respectively. For example, $2 \mathcal{C}_{3,2}^{\prime}$ looks as follows:

(ii) m even: $h\left(x_{m+(i-1) j+k}\right)$ equals

$$
\begin{cases}m+(2 i-1)+(t-1) 2 m, & \text { if } k=2 t ; \\ m+m j+(2 i-1)+(t-1) 2 m, & \text { if } k=2 t-1 \text { and } j \text { even } \\ m j+(2 i-1)+(t-1) 2 m, & \text { if } k=2 t-1 \text { and } j \text { odd. }\end{cases}
$$

and

$$
h\left(y_{m+(i-1) j+k}\right)=h\left(x_{m+(i-1) j+k}\right)-m .
$$

Example ($2 \mathcal{C}_{4,2}^{\prime}$):

Example $\left(2 \mathcal{C}_{4,3}^{\prime}\right)$:

Lemma 1. Both C_{1} and C_{2} have distinct vertex labels.
Proof. Define

$$
g(i, k, r)= \begin{cases}h\left(x_{m+(i-1) j+k}\right), & \text { if } r=1 \\ h\left(y_{m+(i-1) j+k}\right), & \text { if } r=2\end{cases}
$$

Now we consider the following cases:
(i) $(m$ odd $)$: Here, $1 \leqslant g(i, k, 1) \leqslant m j+m-1$ and $m j+1 \leqslant g(i, k, 2) \leqslant$ $2 m j+m-1$. The sequence

$g(1,1,1)$,	$g(2,1,1)$,	\cdots	$g(m, 1,1)$,
$g(1,3,1)$,	$g(2,3,1)$,	\cdots	$g(m, 3,1)$,
\vdots	\vdots	\vdots	\vdots
$g(1,2 t-1,1)$,	$g(2,2 t-1,1)$,	\cdots	$g(m, 2 t-1,1)$.

is a strictly increasing sequence of $m\lceil j / 2\rceil$ odd numbers since
(a) $g(1,1,1)=(2-1)+(1-1) m=1$,
(b) For $i=1,2, \ldots, m-1$ and $1 \leqslant t \leqslant\lceil j / 2\rceil$,

$$
g(i+1,2 t-1,1)=g(i, 2 t-1,1)+2
$$

(c) For $t=1,2, \ldots,\lceil j / 2\rceil-1$,

$$
\begin{aligned}
g(1,2 t+1,1) & =(2-1)+(2 t+1-1) m \\
& =(2 m-1)+(2 t-1-1) m+2 \\
& =g(m, 2 t-1,1)+2
\end{aligned}
$$

And the sequence

$$
\begin{array}{cccc}
g(1,2,1), & g(2,2,1), & \cdots & g(m, 2,1) \\
g(1,4,1), & g(2,4,1), & \cdots & g(m, 4,1) \\
\vdots & \vdots & \vdots & \vdots \\
g(1,2 t, 1), & g(2,2 t, 1), & \cdots & g(m, 2 t, 1)
\end{array}
$$

is a strictly increasing sequence of $m\lfloor j / 2\rfloor$ even numbers since
(a) $g(1,2,1)=(2-1)+(2-1) m=m+1$,
(b) For $i=1,2, \ldots, m-1$ and $1 \leqslant t \leqslant\lfloor j / 2\rfloor$,

$$
g(i+1,2 t, 1)=g(i, 2 t, 1)+2,
$$

(c) For $t=1,2, \ldots,\lfloor j / 2\rfloor-1$,

$$
\begin{aligned}
g(1,2 t+2,1) & =(2-1)+(2 t+1) m \\
& =(2 m-1)+(2 t-1) m+2 \\
& =g(m, 2 t, 1)+2 .
\end{aligned}
$$

Together, the $m\lceil j / 2\rceil+m\lfloor j / 2\rfloor=m j$ distinct numbers label the pendant vertices of C_{1}. Since $h\left(y_{m+(i-1) j+k}\right)=h\left(x_{m+(i-1) j+k}\right)+m j$, C_{2} also has distinct vertex-labels for the pendant vertices.
(ii) (m even, j even): Consider the sequence

$$
\begin{array}{cccc}
g(1,2,2), & g(2,2,2), & \cdots & g(m, 2,2), \\
g(1,4,2), & g(2,4,2), & \cdots & g(m, 4,2), \\
\vdots & \vdots & \vdots & \vdots \\
g(1, j, 2), & g(2, j, 2), & \cdots & g(m, j, 2), \\
g(1,1,2), & g(2,1,2), & \cdots & g(m, 1,2), \\
g(1,3,2), & g(2,3,2), & \cdots & g(m, 3,2), \\
\vdots & \vdots & \vdots & \vdots \\
g(1, j-1,2), & g(2, j-1,2), & \cdots & g(m, j-1,2),
\end{array}
$$

which is a strictly increasing sequence of $m j$ odd numbers since
(a) $g(1,2,2)=1$,
(b) For $i=1,2, \ldots, m-1$ and $1 \leqslant t \leqslant j / 2$,

$$
\begin{aligned}
g(i+1,2 t, 2) & =(2 i+1)+(t-1) 2 m \\
& =(2 i-1)+(t-1) 2 m+2 \\
& =g(i, 2 t, 2)+2,
\end{aligned}
$$

(c) For $t=1,2, \ldots,(j-2) / 2$,

$$
\begin{aligned}
g(1,2 t+2,2) & =(2-1)+(t+1-1) 2 m \\
& =(2 m-1)+(t-1) 2 m+2 \\
& =g(m, 2 t, 2)+2,
\end{aligned}
$$

(d) $g(1,1,2)=m j+(2-1)+(1-1) 2 m=(2 m-1)+(j / 2-1) 2 m+2=$ $g(m, j, 2)+2$,
(e) For $i=1,2, \ldots, m-1$ and $1 \leqslant t \leqslant j / 2$,

$$
\begin{aligned}
g(i+1,2 t-1,2) & =m j+(2 i+1)+(t-1) 2 m \\
& =m j+(2 i-1)+(t-1) 2 m+2 \\
& =g(i, 2 t-1,2)+2
\end{aligned}
$$

(f) For $t=1,2, \ldots,(j-2) / 2$,

$$
\begin{aligned}
g(1,2 t+1,2) & =m j+(2-1)+(t+1-1) 2 m \\
& =m j+(2 m-1)+(t-1) 2 m+2 \\
& =g(m, 2 t-1,2)+2
\end{aligned}
$$

Hence, C_{2} has distinct vertex-labeling and so does C_{1}.
(iii) (m even, j odd): This may be demonstrated with the same argument as in the previous case, but using the sequence

$g(1,2,2)$,	$g(2,2,2)$,	\cdots	$g(m, 2,2)$,
$g(1,4,2)$,	$g(2,4,2)$,	\cdots	$g(m, 4,2)$,
\vdots	\vdots	\vdots	\vdots
$g(1, j-1,2)$,	$g(2, j-1,2)$,	\cdots	$g(m, j-1,2)$,
$g(1,1,2)$,	$g(2,1,2)$,	\cdots	$g(m, 1,2)$,
$g(1,3,2)$,	$g(2,3,2)$,	\cdots	$g(m, 3,2)$,
\vdots	\vdots	\vdots	\vdots
$g(1, j, 2)$,	$g(2, j, 2)$,	\cdots	$g(m, j, 2)$.

Lemma 2. $2 \mathcal{C}_{m, j}^{\prime}$ has distinct edge-labeling, that is, each edge $(x, y) \in$ $E\left(2 \mathcal{C}_{m, j}^{\prime}\right)$ has a distinct value of $|h(x)-h(y)|$ in $\{1,2, \ldots, 2 m+2 m j\}$.

Proof. By construction, for $i=1,2, \ldots, m$,

$$
\begin{aligned}
\left|h\left(x_{0}\right)-h\left(x_{i}\right)\right| & =|0-(m+2 m j+i)|=m+2 m j+i, \\
\left|h\left(y_{0}\right)-h\left(y_{i}\right)\right| & =|(m+2 m j)-(m+2 m j+i)|=i .
\end{aligned}
$$

We need to show that the remaining $2 m j$ edges, each of which is connected to a pendant vertex, have distinct labels using

$$
m+1, m+2, \ldots, m+2 m j
$$

Define

$$
f(i, k, r)= \begin{cases}h\left(x_{i}\right)-h\left(x_{m+(i-1) j+k}\right), & \text { if } r=1 \\ h\left(y_{i}\right)-h\left(y_{m+(i-1) j+k}\right), & \text { if } r=2 .\end{cases}
$$

Note that for positive integers $1 \leqslant i \leqslant m, 1 \leqslant k \leqslant j$, and $1 \leqslant r \leqslant 2$, there are exactly $2 m j$ input combinations for $f(i, k, r)$. Now we consider the following cases:
(i) (m odd): Consider the following sequence:

$$
\begin{array}{cccc}
f(m, j, 2), & f(m-1, j, 2), & \cdots & f(1, j, 2), \\
f(m, j-1,2), & f(m-1, j-1,2), & \cdots & f(1, j-1,2), \\
f(m, j-2,2), & f(m-1, j-2,2), & \cdots & f(1, j-2,2), \\
\vdots & \vdots & \vdots & \vdots \\
f(m, 1,2), & f(m-1,1,2), & \cdots & f(1,1,2),
\end{array}
$$

We claim that the $m j$ numbers in the sequence are $m+1, m+$ $2, \ldots, m+m j$, which can be observed from the following:
(a) The first number,

$$
\begin{aligned}
f(m, j, 2) & =h\left(y_{m}\right)-h\left(y_{m+(m-1) j+j}\right) \\
& =(2 m j+2 m)-(m j+(2 m-1)+(j-1) m) \\
& =m+1
\end{aligned}
$$

(b) For $i=1,2, \ldots, m-1$ and $1 \leqslant k \leqslant j$,

$$
\begin{aligned}
f(i, k, 2)= & h\left(y_{i}\right)-h\left(y_{m+(i-1) j+k}\right) \\
= & (2 m j+2 m+i)-(m j+(2 i-1)+(k-1) m) \\
= & (2 m j+2 m+i+1)-1 \\
& -(m j+(2 i+1)+(k-1) m)+2 \\
= & f(i+1, k, 2)+1 .
\end{aligned}
$$

(c) For $k=1,2, \ldots, j-1$,

$$
\begin{aligned}
f(m, k, 2)= & h\left(y_{m}\right)-h\left(y_{m+(2 m-1) j+k}\right) \\
= & (2 m j+2 m)-(m j+(2 m-1)+(k-1) m) \\
= & (2 m j+m+1)+m-1 \\
& -(m j+(2-1)+(k+1-1) m)-m+2 \\
= & f(1, k+1,2)+1
\end{aligned}
$$

(d) The last number,

$$
\begin{aligned}
f(1,1,2) & =h\left(y_{1}\right)-h\left(y_{m+(1-1) j+1}\right) \\
& =(2 m j+m+1)-(m j+(2-1)+(1-1) m) \\
& =m+m j
\end{aligned}
$$

Similarly, the $m j$ numbers in the sequence

$$
\begin{array}{cccc}
f(m, j, 1), & f(m-1, j, 1), & \cdots & f(1, j, 1), \\
f(m, j-1,1), & f(m-1, j-1,1), & \cdots & f(1, j-1,1), \\
f(m, j-2,1), & f(m-1, j-2,1), & \cdots & f(1, j-2,1), \\
\vdots & \vdots & \vdots & \vdots \\
f(m, 1,1), & f(m-1,1,1), & \cdots & f(1,1,1),
\end{array}
$$

represent the numbers

$$
m+m j+1, m+m j+2, \ldots, m+2 m j
$$

since

$$
\begin{aligned}
f(m, j, 1) & =m+m j+1 \\
f(i, k, 1) & =f(i+1, k, 1)+1 \text { for } i=1,2, \ldots, m-1 \\
f(m, k, 1) & =f(1, k+1,1)+1 \text { for } k=1,2, \ldots, j-1, \\
f(1,1,1) & =m+2 m j .
\end{aligned}
$$

(ii) (m even, j even):

Consider the following sequence:

$$
\begin{array}{cccc}
f(m, j-1,1), & f(m-1, j-1,1), & \cdots & f(1, j-1,1), \\
f(m, j-1,2), & f(m-1, j-1,2), & \cdots & f(1, j-1,2), \\
f(m, j-3,1), & f(m-1, j-3,1), & \cdots & f(1, j-3,1), \\
f(m, j-3,2), & f(m-1, j-3,2), & \cdots & f(1, j-3,2), \\
\vdots & \vdots & \cdots & \vdots \\
f(m, 1,1), & f(m-1,1,1), & \cdots & f(1,1,1), \\
f(m, 1,2), & f(m-1,1,2), & \cdots & f(1,1,2) .
\end{array}
$$

We claim that the $m j$ numbers in the sequence are $m+1, m+$ $2, \ldots, m+m j$, which can be observed from the following:
(a) The first number,

$$
\begin{aligned}
f(m, j-1,1)= & h\left(x_{m}\right)-h\left(x_{m+(m-1) j+(j-1)}\right)=(2 m j+2 m) \\
& -(m+m j+(2 m-1)+(j / 2-1) 2 m)=m+1
\end{aligned}
$$

(b) For $i=1,2, \ldots, m-1$ and $1 \leqslant t \leqslant j / 2$,

$$
\begin{aligned}
f(i, 2 t-1,1)= & h\left(x_{i}\right)-h\left(x_{m+(i-1) j+(2 t-1)}\right) \\
= & (2 m j+m+i)-(m+m j+(2 i-1)+(t-1) 2 m) \\
= & (2 m j+m+i+1)-1 \\
& -(m+m j+(2(i+1)-1)+(t-1) 2 m)+2 \\
= & f(i+1,2 t-1,1)+1 .
\end{aligned}
$$

Similarly, for $i=1,2, \ldots, m-1$ and $1 \leqslant t \leqslant j / 2$,

$$
f(i, 2 t-1,2)=f(i+1,2 t-1,2)+1
$$

(c) For $t=1,2, \ldots, j / 2$,

$$
\begin{aligned}
f(m, 2 t-1,2)= & h\left(y_{m}\right)-h\left(y_{m+(m-1) j+(2 t-1)}\right) \\
= & (2 m j+2 m)-(m j+(2 m-1)+(t-1) 2 m) \\
= & (2 m j+m+1) \\
& -(m+m j+(2-1)+(t-1) 2 m)+1 \\
= & h\left(x_{1}\right)-h\left(x_{m+(1-1) j+(2 t-1)}\right)+1 \\
= & f(1,2 t-1,1)+1 .
\end{aligned}
$$

(d) For $t=1,2, \ldots,(j-2) / 2$,

$$
\begin{aligned}
f(m, 2 t-1,1)= & h\left(x_{m}\right)-h\left(x_{m+(m-1) j+(2 t-1)}\right) \\
= & (2 m j+2 m)-(m+m j+(2 m-1)+(t-1) 2 m) \\
= & (2 m j+m+1)+m-1-m \\
& -(m j+(2-1)+((t+1)-1) 2 m)+2 \\
= & h\left(y_{1}\right)-h\left(y_{m+(1-1) j+(2 t+1))}\right)+1 \\
= & f(1,2 t+1,2)+1 .
\end{aligned}
$$

(e) The last number,

$$
\begin{aligned}
f(1,1,2) & =x_{1}-x_{m+(1-1) j+1} \\
& =(2 m j+m+1)-(m j+(2-1)+(1-1) 2 m)=m+m j
\end{aligned}
$$

Similarly, the $m j$ numbers in the sequence

$$
\begin{array}{cccc}
f(m, j, 1), & f(m-1, j, 1), & \cdots & f(1, j, 1), \\
f(m, j, 2), & f(m-1, j, 2), & \cdots & f(1, j, 2), \\
f(m, j-2,1), & f(m-1, j-2,1), & \cdots & f(1, j-2,1), \\
f(m, j-2,2), & f(m-1, j-2,2), & \cdots & f(1, j-2,2), \\
\vdots & \vdots & \cdots & \vdots \\
f(m, 2,1), & f(m-1,2,1), & \cdots & f(1,2,1), \\
f(m, 2,2), & f(m-1,2,2), & \cdots & f(1,2,2) .
\end{array}
$$

represent the numbers

$$
m+m j+1, m+m j+2, \ldots, m+2 m j
$$

since

$$
\begin{aligned}
f(m, j, 1) & =m+m j+1 \\
f(i, 2 t, 1) & =f(i+1,2 t, 1)+1 \text { for } i=1,2, \ldots, m-1 \\
f(i, 2 t, 2) & =f(i+1,2 t, 2)+1 \text { for } i=1,2, \ldots, m-1 \\
f(m, 2 t, 2) & =f(1,2 t, 1)+1 \text { for } t=1,2, \ldots, j / 2, \\
f(m, 2 t, 1) & =f(1,2 t+2,2)+1 \text { for } t=1,2, \ldots,(j-2) / 2, \\
f(1,2,2) & =m+2 m j .
\end{aligned}
$$

(iii) (m even, j odd):

It can be shown as in the previous case that the $m(j+1)$ numbers in the sequence

$$
\begin{array}{cccc}
f(m, j, 1), & f(m-1, j, 1), & \cdots & f(1, j, 1), \\
f(m, j, 2), & f(m-1, j, 2), & \cdots & f(1, j, 2), \\
f(m, j-2,1), & f(m-1, j-2,1), & \cdots & f(1, j-2,1), \\
f(m, j-2,2), & f(m-1, j-2,2), & \cdots & f(1, j-2,2), \\
\vdots & \vdots & \cdots & \vdots \\
f(m, 1,1), & f(m-1,1,1), & \cdots & f(1,1,1), \\
f(m, 1,2), & f(m-1,1,2), & \cdots & f(1,1,2) .
\end{array}
$$

represent the numbers

$$
m+1, m+2, \ldots, 2 m+m j
$$

since

$$
\begin{aligned}
f(m, j, 1)= & m+1 \\
f(i, 2 t-1,1)= & f(i+1,2 t-1,1)+1 \\
& \text { for } i=1,2, \ldots, m-1 \text { and } 1 \leqslant t \leqslant(j+1) / 2 \\
f(i, 2 t-1,2)= & f(i+1,2 t-1,2)+1 \\
& \text { for } i=1,2, \ldots, m-1 \text { and } 1 \leqslant t \leqslant(j+1) / 2 \\
f(m, 2 t-1,2)= & f(1,2 t+1,1)+1 \text { for } t=1,2, \ldots,(j-1) / 2 \\
f(m, 2 t-1,1)= & f(1,2 t+1,2)+1 \text { for } t=1,2, \ldots,(j-3) / 2 \\
f(1,2,2)= & 2 m+2 m j .
\end{aligned}
$$

And, the $m(j-1)$ numbers in the sequence

$$
\begin{array}{cccc}
f(m, j-1,1), & f(m-1, j-1,1), & \cdots & f(1, j-1,1), \\
f(m, j-1,2), & f(m-1, j-1,2), & \cdots & f(1, j-1,2), \\
f(m, j-3,1), & f(m-1, j-3,1), & \cdots & f(1, j-3,1), \\
f(m, j-3,2), & f(m-1, j-3,2), & \cdots & f(1, j-3,2), \\
\vdots & \vdots & \cdots & \vdots \\
f(m, 2,1), & f(m-1,2,1), & \cdots & f(1,2,1), \\
f(m, 2,2), & f(m-1,2,2), & \cdots & f(1,2,2) .
\end{array}
$$

represent the numbers

$$
2 m+m j+1,2 m+m j+2, \ldots, m+2 m j,
$$

since

$$
\begin{aligned}
f(m, j-1,1)= & 2 m+m j+1 \\
f(i, 2 t, 1)= & f(i+1,2 t, 1)+1 \\
& \text { for } i=1,2, \ldots, m-1 \text { and } 1 \leqslant t \leqslant(j-1) / 2 \\
f(i, 2 t, 2)= & f(i+1,2 t, 2)+1 \\
& \text { for } i=1,2, \ldots, m-1 \text { and } 1 \leqslant t \leqslant(j-1) / 2 \\
f(m, 2 t, 2)= & f(1,2 t, 1)+1 \text { for } t=1,2, \ldots,(j-1) / 2 \\
f(m, 2 t, 1)= & f(1,2 t+2,2)+1 \text { for } t=1,2, \ldots,(j-3) / 2 \\
f(1,2,2)= & m+2 m j
\end{aligned}
$$

Theorem 2. For $m \geqslant 3,\left(\mathcal{C}_{m, j}^{\prime}\right)_{\alpha}=2$ where $j \geqslant 1$.

3 Trees with α-deficits

In this section, we have relied on the results of Brinkmann et al. in [T].
Conjecture 2. If $\Delta_{T}=2 k+1$, then $\alpha_{d e f}(T) \leqslant k$.
Conjecture 3. For all $k \geqslant 1$ and for all $2 \leqslant j \leqslant 2 k$,

$$
\alpha_{d e f}\left(\mathcal{C}_{2 k+1, j}^{\prime}\right)=k
$$

Lemma 3. For $k \geqslant 1$ and $2 \leqslant j \leqslant 2 k$,

$$
\alpha_{\text {def }}\left(\mathcal{C}_{2 k+1, j}^{\prime}\right) \leqslant k
$$

Proof. Consider the graph $\mathcal{C}_{m, j}^{\prime}$ with $m=2 k+1$. Let the vertices be

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, x_{m+2}, \ldots, x_{m+m j}
$$

where x_{0} is the central vertex with degree m, each of the vertices $x_{1}, x_{2}, \ldots, x_{m}$ has degree $j+1$, and $x_{m+1}, x_{m+2}, \ldots, x_{m+m j}$ are the pendant vertices. Consider the vertex labeling h with $h\left(x_{0}\right)=0, h\left(x_{i}\right)=m j+i$ for $i=1,2, \ldots, m$ and
$h\left(x_{m+(i-1) j+r}\right)= \begin{cases}(2 i-1)+(r-1) m, & \text { for } 1 \leqslant i \leqslant m, 1 \leqslant r \leqslant j-1 ; \\ (2 i-1)+(j-1) m, & \text { for } 1 \leqslant i \leqslant m-k .\end{cases}$
Similar to the m-odd case of Lemma 四, the vertices

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, x_{m+2}, \ldots, x_{m+m j-k}
$$

have distinct labels from $0,1,2, \ldots, m+m j$. Similar to the m-odd case of Lemma [$\boldsymbol{\nabla}$, all edges have distinct labels except that the labels for the k edges $\left(x_{i}, x_{m+(i-1) j+j}\right)$ with $i=m-k+1, m-k+2, \ldots, m$ are missing.

Proposition 1. For $k \geqslant 1$ and $2 \leqslant j \leqslant 2 k$,

$$
\alpha_{d e f}\left(\mathcal{C}_{2 k+1, j}^{\prime}\right)>0
$$

Proof. Let $G=\mathcal{C}_{m, j}^{\prime}$ where $m=2 k+1$ with vertices

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}, x_{m+2}, \ldots, x_{m+m j}
$$

where x_{0} is the central vertex with degree m and $x_{m+1}, x_{m+2}, \ldots, x_{m+m j}$ are the pendant vertices. Assume that G has an α-labeling ℓ. Then, the sum of all edge-labels,

$$
S=\sum_{i=1}^{m+m j} i=(m+m j)(m+m j+1) / 2 \equiv 0 \quad(\bmod m)
$$

By Remark $B 1$ of Brinkmann et al. [T], let the vertices x_{i} for $i=$ $1,2, \ldots, m$ be labeled with $m j+i$, respectively. The remaining numbers $0,1,2, \ldots, m j$ label x_{0} and the pendant vertices. For any choice of $\ell\left(x_{0}\right) \in$ $\{0,1,2, \ldots, m j\}$, we have

$$
\begin{aligned}
S_{1} & =\sum_{i=1}^{m}\left(\ell\left(x_{i}\right)-\ell\left(x_{0}\right)\right)=\sum_{i=1}^{m}\left(\ell\left(x_{i}\right)\right)-\sum_{i=1}^{m}\left(\ell\left(x_{0}\right)\right) \\
& =m^{2} j+m(m+1) / 2-m \ell\left(x_{0}\right) \\
& \equiv 0(\bmod m)
\end{aligned}
$$

Since ℓ is an α-labeling, for $i=1,2, \ldots, m$ and $t=1,2, \ldots, j$, the pendant vertices $x_{m+(i-1) j+t}$ are labeled in such a way that

$$
\begin{aligned}
S_{2} & =\sum_{i=1}^{m} \sum_{t=1}^{j}\left(\ell\left(x_{i}\right)-\ell\left(x_{m+(i-1) j+t}\right)\right) \\
& =j \sum_{i=1}^{m} \ell\left(x_{i}\right)-\sum_{i=1}^{m} \sum_{t=1}^{j}\left(\ell\left(x_{m+(i-1) j+t}\right)\right) \\
& \equiv 0 \quad(\bmod m), \quad\left(\text { since } S=S_{1}+S_{2} \text { and } S, S_{1} \equiv 0 \quad(\bmod m)\right)
\end{aligned}
$$

implying

$$
\sum_{i=1}^{m} \sum_{t=1}^{j}\left(\ell\left(x_{m+(i-1) j+t}\right)\right) \equiv 0 \quad(\bmod m)
$$

which holds only if $\ell\left(x_{0}\right)$ is chosen from the $m j+1$ labels $0,1, \ldots, m j$ in such a way that

$$
\ell\left(x_{0}\right) \equiv 0 \quad(\bmod m)
$$

Suppose $\ell\left(x_{0}\right)=0$. Then the edge-labels of $\left(x_{0}, x_{i}\right)$ for $i=1,2, \ldots, m$ are

$$
m j+1, m j+2, \ldots, m j+m
$$

Since the labels less than $m j+1$ must still be used, we may determine the following locations for vertex labels in order:

1 can only label a vertex attached to x_{1}, adding $m j$ to the set of edgelabels,

2 can only label a vertex attached to x_{1}, adding $m j-1$ to the set of edge-labels,
\vdots
j can only label a vertex attached to x_{1}, adding $m j-(j-1)$ to the set of edge-labels.

All the pendant vertices attached to x_{1} are labeled and $j+1$ cannot be used to label any pendant vertex attached to x_{i} for $i=2,3, \ldots, m$. Hence $\ell\left(x_{0}\right) \neq 0$.

Let $\ell\left(x_{0}\right)=t m$ with $1 \leqslant t \leqslant j$. Then the edge-labels of $\left(x_{0}, x_{i}\right)$ for $i=1,2, \ldots, m$ are

$$
m j-m t+1, m j-m t+2, \ldots, m j-m t+m
$$

As above, we may determine the locations of certain vertex labels:
The only way to add edge-label $m+m j$ is to use 0 to label a vertex attached to x_{m},

The only way to add edge-label $m+m j-1$ is to use 1 to label a vertex attached to x_{m},
:
The only way to add edge-label $m+m j-(j-1)$ is to use $j-1$ to label a vertex attached to x_{m}.

All the pendant vertices attached to x_{m} are labeled and the labels used are $0,1,2, \ldots, j-1$. But the only way to add the edge-label $m+m j-j$ is to use $r \in\{0,1,2, \ldots, j-1\}$ to label a pendant vertex attached to x_{m-j+r} so that

$$
\ell\left(x_{m-j+r}\right)-r=m j+(m-j+r)-r=m+m j-j,
$$

which is impossible. Hence, we have a contradiction to our assumption that G has an α-labeling.

4 Concluding remarks

In this paper, we have given an example of constructing a graph with a graceful, bipartite labeling which can be decomposed into two isomorphic edge-disjoint trees consisting of a root node of degree m, each of whose neighbours is connected to $j(j \geqslant 1)$ leaves.

This result is a special case of the conjecture that for every tree T, two copies of T can be packed into a graph with a graceful, bipartite labeling. The result remotely connects to the graceful tree conjecture which states that all trees are graceful. We have also explored the extent to which a bipartite labeling falls short of gracefulness.

Acknowledgements

We would like to thank the anonymous referee for the helpful suggestions concerning the presentation of the paper.

References

[1] G. Brinkmann, S. Crevals, H. Mélot, L. Rylands, and E. Steffen, $\alpha-$ labelings and the Structure of Trees with Nonzero α-deficit, Discrete Math. Theoretical Comp. Science, 14:1 (2012), 159-174.
[2] S. El-Zanati, H.-L. Fu, and C.-L. Shiue, A note on the -labeling number of bipartite graphs, Discrete Math., 214 (2000), 241-243.
[3] J. A. Gallian. A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, 19 (2012), \#DS6.
[4] A. Rosa. On certain valuations of the vertices of a graph, Théorie des graphes, Journées internationales d'étude, Rome (1966), 349-355.
[5] A. Rosa, B. Širáň. Bipartite labelings of trees and gracesize. J. Graph Theory, 19 (1995), 201-205.
[6] C. -L. Shiue, H. -L. Fu. α-labeling number of trees, Discrete Math., 306 (2006), 3290-3296.
[7] C. -L. Shiue, H. -C. Lu. Trees Which Admit No α-labelings, Ars Combinatoria, 103 (2012), 453-463.
[8] H. Snevily, New families of graphs that have α-labeling, Discrete Math., 170 (1997), 185-194.
[9] S.-L. Wu, A necessary condition for the existence of an α-labeling, preprint.

[^0]: *Hunter Snevily passed away on November 11, 2013 after his long struggle with Parkinson's disease. We have lost a good friend and colleague. He will be greatly missed and fondly remembered.

