The a-labeling number of comets is 2

Tanbir Ahmed

Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

ta_ahmed@cs.concordia.ca

Hunter Snevily*
Department of Mathematics
University of Idaho - Moscow, Idaho, USA

Abstract
We investigate the claim that for every tree T' (with m edges),
there exists an a-labeling of T', or else there exists a graph Hr with
an a-labeling such that Hr can be decomposed into two edge-disjoint
copies of T'. We prove that the above claim is true for comets Cp, 2.
This is particularly noteworthy since comets C,, 2 are known to have
arbitrarily large a-deficits.

1 Introduction

Given a graph G, an injective function f : V(G) — N is called a vertex
labeling, or a vertexr numbering of G. Such a function f on a graph G with
m edges is known as a graceful-labeling if f is an injection from V(G) to the
set {0,1,...,m} such that the values | f(x)— f(y)| for all m pairs of adjacent
vertices x,y are distinct. A labeling f is bipartite if there exists an integer
A so that for each edge zy either f(z) < A < f(y) or f(y) < A< f(z). A
labeling f is an a-labeling if it is graceful and bipartite.

Clearly, if G has an a-labeling, then G must be bipartite. Suppose G is
bipartite with m edges and degree-sequence dy,ds, . ..,d,. Wu [4] showed
that the necessary condition for G having an a-labeling is

m
ng(dldea"'vdnam) ‘ (2)
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The following theorem is a classical result on a-labeling of graphs.

Theorem 1 (Rosa [d]). Let G be a graph with m edges, and let G have
an o-labeling. Then the complete graph Ksp,,41 can be decomposed into
isomorphic copies of G, where p is an arbitrary positive integer.

Snevily [§] introduced the following graph parameter motivated by Rosa’s
result:

A bipartite graph G with m edges eventually has an a-labeling if there
exists a graph H with ¢ - m edges (where ¢ is a positive integer), such that
H has an a-labeling and can be decomposed into edge-disjoint copies of G.
Such a graph H is called the host graph of G.

Suppose G is a bipartite graph that eventually has an a-labeling; then
the a-labeling number of G, denoted G, is defined as follows:

G, = min {t : 3 a host graph H such that |[E(H)| =¢-m}.

Snevily [8] conjectured that for every bipartite graph G, G, < oo, which
was later proved by El-Zanati, Fu and Shiue [?]. There are no known exam-
ples of a graph G with G, > 2 (See Gallian [3]). Snevily also conjectured
that for a tree T" with m edges, T, < m. Shiue and Fu [B] proved that
a-labeling number for a tree with m edges and radius r is at most [r/2]m.
They also prove that a tree with m edges and radius r decomposes K; for
some t < (r+ 1)m? + 1.

In this paper, we conjecture the following:

Conjecture 1. For any tree T,
T, <2.

For a tree T, the a-deficit ager(T) equals m — a(T), where a(T) is
defined as the maximum number of distinct edge labels over all bipartite
labelings of T'.

Observation 1 ([8]). Let G = (X,Y) be a bipartite graph with m edges
and consider the graph rG consisting of r disjoint copies of G. Suppose
there exists a labeling function

h:V(rG)—{0,1,2,...,rm}
such that

(7) the labels assigned to the vertices in any single copy of G (in rG) are
distinct,

(1) if (z,y) € E(rG), then the value |h(x) — h(y)| is assigned to the edge
(z,y), and no other edge in E(rG),



(#it) there exists some real number A, such that if G; = (X;,Y;) is some
copy of G in rG then

max {h(z):z € X;} < A\, <min{h(y) : y € i},
or else

max {h(y) 1y € i} < A\p <min{h(x): 2 € X;}.

Let
S={z:2eV(rqG) and h(zx) < \p}

and
T={y:yeV(rG)and h(y) > A\p}.

Clearly, S and T are independent sets. Now we can take the labeled version
of rG and create a new graph H by identifying vertices (from different copies
of G) with the same label. Hence H is a bipartite graph with |E(H)| = rm,
and that H has a-labeling. Clearly H is a host graph of G.

2 «a-labeling number of comets

The comet Cy, 1 is obtained from the star K, ,, by replacing each edge in
K1, with a path of length k. Rosa and Siran [5] showed that for every
m2>=1,

def(Cm,2) = [m/3],

which implies that (Cp, 2)q > 2 for m > 3.

Let Cj, ; be a comet-like tree with a central vertex of degree m, and
each neighbour of the central vertex is attached to j pendant vertices where
j = 1. Here, Cp2 =C),

m,1°

2.1 Construction for (C;, ;)o where m >3 and j > 1

Comet C;n,j has 1 + m + myj vertices and m + mj edges. We construct
a graph 2(,’;”7]- with 2m(j + 1) edges that has an a-labeling and can be
decomposed into two edge-disjoint copies isomorphic to C;n, i

We start with two disjoint copies C; and C5 of Cjn’ j and then we utilize
Observation M. Note that there are three types of vertices in Cj, ;: one
central vertex of degree m, m vertices of degree j + 1, and mj pendant
vertices.

Let the central vertices in C; and C5 be x¢ and yg, respectively. Let the

degree-(j + 1) vertices in Cy and Cy be x1,x2, ..., Ty and y1,Y2,- - -, Ym,



respectively. Let in C, the pendant vertices attached to z; with 1 <i <m
be

Tt (i—1)j+1 TmA4(i—1)54+25 « - s TmA4(i—1) 43
and in C9, the pendant vertices attached to y; with 1 <7 < m be
Ym+(i—1)j+1 Ym+(i—1)54+25 - - - s Ym+(i—1)j+5 -
We define a labeling function
h: {anxlw -y Tm4+myj,> Yo, Y1, - - 'aym-i-mj} — {07 1a2a .. 72m+ 2m]} -

Label zg and yg as 0 and 2mj+m, respectively. The vertices x1,x2,...,2Tm
in C7 and y1,ya2, ..., Ym in Cy share m labels in common, which are

2mj+m+1,2mj +m+2,2mj+m+3,...,2mj + 2m,

in the same order from left to right for the indices i = 1,2,...,m.
Now, for the k-th pendant vertex attached to z; and y; fori =1,2,...,m,
set

(1) m odd:
W(&pp(i-1)j46) = (26 —1)+ (k—1)m, and
h(Ymti—1)j4k) = P(@Tmp-1)j4x) +mJ.

respectively. For example, 2C; , looks as follows:

(i) m even: h(Tpy(i—1)j+k) €quals

m+ (2i — 1)+ (t — 1)2m, if k= 2t;

m+mj+ (20 —1)+(t—1)2m, if k=2t—1 and j even;

mj+ (2i — 1) + (t — 1)2m, if k=2t —1 and j odd.
and

P(Ym(i—1)j4k) = M Ty (i—1)j41) — M-

Example (2C} 5):




Example (2C} 3):

Lemma 1. Both C; and C5 have distinct vertex labels.
Proof. Define

. h(.’l? +(i—1) ‘+k) ifr=1;
i, k,r) = moem TR ’
g( ) { h(ym+(i—1)j+k)7 if r=2.
Now we consider the following cases:
(1) (m odd): Here, 1 < g(i,k,1) <mj+m—1and mj+1< g(i,k,2) <
2mj 4+ m — 1. The sequence

9(17 171)7 9(27171)7 g(m’ 171)7
9(1,3,1), 9(2,3,1), g(m,3,1),
g(lv2t_171)a g(2a2t_171)a g(maZt_lvl)

is a strictly increasing sequence of m[j/2] odd numbers since
(@) g(1,1,)=2-1)+(1-1)m=1,
(b) Fori=1,2,...,m—1and 1 <t <[j/2],
gli+1,2t—1,1) = g(i,2t —1,1) + 2,
(¢) Fort=1,2,...,[j/2] — 1,
g(l,2t+1,1) = 2-1)+2t+1-1)m
2m— 1)+ (2t —-1—-1)m+2
= g(m,2t—1,1)+2.

And the sequence

9(17271)3 9(27271)7 g(m7271)a
9(1,471)3 9(274’1)7 g(m7471)3
g(1a2t51)7 9(272ta 1)7 g(m72t71)7

is a strictly increasing sequence of m|j/2] even numbers since



(a) g(1,2,)=2-1)4+(2-1)m=m+1,
(b) Fori=1,2,...,m—1and 1 <t < |j/2],

gli+1,2t,1) = g(i,2t,1) + 2,

(¢) Fort=1,2,...,|5/2] — 1,

2-1)+(2t+1)m
(2m — 1) + (2t — 1)m + 2
= g(m,2t,1)+2.

g(L,2t +2,1) =

Together, the m[j/2] + m|j/2] = myj distinct numbers label the
pendant vertices of Cy. Since A(Ypt(i—1)j+k) = P(Tm(i—1)j4+%) +M7,
C5 also has distinct vertex-labels for the pendant vertices.

(1) (m even, j even): Consider the sequence
9(1,2,2), g9(2,2,2), g(m,2,2),
9(174,2) 9(274,2)7 g(m7432)7
9(1,3,2), 9(2,3,2), g(m, j,2),
g(]‘71’2)7 9(271’2)7 (m7 1’2)
9(1737 2)7 9(2737 2)7 (m7 37 2)
g(laj7172)a 9(23j7172)a g(m7j7132)7

which is a strictly increasing sequence of mj odd numbers since

(a) g(1’272) = 17
(b) Fori=1,2,...,m—1and 1 <t<j/2,

gi+1,2t,2) = (2i+1)+(t—1)2m
= (2i-1)+(t—1)2m+2
= g(i,2t,2) + 2,

(¢) Fort=1,2,...,(j — 2)/2,

g(1,2t+2,2) = (2—-1)4+(t+1-1)2m
= @m—1)+(t—1)2m+2
= g(m72ta2) + 27

(d) ¢(1,1,2) =mj+(2-1)+(1-1)2m = 2m—1)+(j/2—-1)2m+2 =
g9(m,j,2) + 2,



() Fori=1,2,...,m—1land 1 <t<j/2,
gli+ 1,2t —1,2) = mj+(2i+1)+(
= mj+ (20— 1)+ (
= g(i,2t —1,2) +2,

t—1)2m
t—1)2m+2
(f) Fort=1,2,...,(5 —2)/2,
9(1,2t+1,2) = mj+(2-1)+(t+1-1)2m
= mj+(2m—-1)4+{—-1)2m+2
= g(m,2t—1,2) +2.
Hence, (' has distinct vertex-labeling and so does C'.

(#it) (m even, j odd): This may be demonstrated with the same argument
as in the previous case, but using the sequence

9(17272)7 9(27272)7 g(m72a2)7
9(174,2)7 9(274,2)7 g(m74a 2)7
g(la.] - 172)a 9(25.] - 172)a g(mv . 132)7
9(171,2)7 9(2,1,2), g(m7132)7
9(17372)7 9(27372)7 g(m7372)7
9(1,5,2) 9(2,4,2) g(m,j,2).

Lemma 2. 2C7'n7j has distinct edge-labeling, that is, each edge (x,y) €
E(2C!, .) has a distinct value of |h(z) — h(y)| in {1,2,...,2m + 2mj}.

m,j
Proof. By construction, for i =1,2,...,m,
|h(zo) — h(z;)] = 10— (m+2mj+i)|=m+2mj+1,
\h(yo) = h(yi)] = |(m+2mj) — (m+2mj + )| =i.

We need to show that the remaining 2mj edges, each of which is connected
to a pendant vertex, have distinct labels using

m+1m+2,....,m+2mj.
Define

j h(xi) — M@y io1)jr), ifr=1;
K, = mt—=1)] o )
T k) { h(y:) — h(ym+(i71)j+k), if r =2.



Note that for positive integers 1 < i < m, 1 < k < j,and 1 < r < 2,
there are exactly 2mj input combinations for f(i,k,r). Now we consider
the following cases:

(i) (m odd): Consider the following sequence:

f(m7j72)7 f(m_laj72)7 f(1>]72)>
f(mm?:_la )7 f(m_la.]_17 )a f(17.]_1a )7
f(m,j—2, )7 f(m_la.]_27 )a f(17.7_2a )7
f(m71a2)a f(m_17172)a f(171a2)a
We claim that the mj numbers in the sequence are m + 1,m +
2,...,m~+ mj, which can be observed from the following:

(a) The first number,

f(m7j7 2) = h(ym) - h(ym-l-(m—l)j-i-j)
= (2mj+2m)—(mj+(2m—-1)+(j —1)m)
= m+1

(b) Fori=1,2,...,m—1and 1 <k <j,

fOR2) = h(yi) = MYt (i-1)j++)
= (2mj+2m+i)—(mj+ 2i—1)+ (k—1)m)
@Cmj+2m+i+1)—1
—(mj+ (2i +1) + (k — 1)m) +2
= fli+1,k2)+1.

(¢) For k=1,2,...,5—1,

f(m,k,2) = h(Ym) = W(Ym+@m-1)j+k)

(2mj +2m) — (mj + (2m — 1) + (k — 1)m)
@Cmj+m+1)+m—1
—(mji+2-1)+k+1-1)m)—m+2
= f(l,k+1,2)+1

(d) The last number,

f(17 1, 2) = h(yl) - h(ym+(1—1)j+1)
= @mjtm+1)—(mj+@2—1)+(1-m)
= m-+mj.



Similarly, the mj numbers in the sequence

f(m7j71)7 f(m_lajvl)a f(17]a1)7
f(m7]_1a1)7 f(m_la.]_171)a f(17.]_1a1)7
f(mvj_2a1)7 f(m_laj_271)a f(lmj_zvl))

f(m7171)a f(m_17171)a f(171a1)a

represent the numbers

m+mj+1,m+mj+2,...,m+2mj,

since
fm,g1) = mAmj+1,
fli, k1) = fle+1L,k1)+1fori=1,2,...,m—1,
fim k1) = f(Lk+1,1)+1fork=1,2,...,5—1,
f(1,1,1) = m+2mj.

(7i) (m even, j even):

Consider the following sequence:

(m]_1a2)7 ( _1.7_172)a f(17.2_1v2)7
( ‘77331)7 f( -1 j 371)3 f(]-?] 331)7
(mj_372)7 ( _1.7_372)7 f(]-vj 372)»
f(mv]-v]')a f(m717171)7 f(]'v]-vl)a
f(m7172)a f(m_]-v]-vQ)v f(17172)
We claim that the mj numbers in the sequence are m + 1,m +
2,...,m+ mj, which can be observed from the following:
(a) The first number,
fim,j—=1,1) = Mom) = MTpym-1)+G-1)) = (2mj +2m)

—(m+mj+2m—-1)+(j/2—-1)2m)=m+ 1.

ort=12...,m—1an <t <yg/2,
b) Fori=1,2 land 1 /2

f(@,2t =1,1) = h(z;) = M@my-1)j+2t-1))
2mj+m+i)—(m+mj+ (2i—1)+ (¢t —1)2m)
= (2mj+m+i+1)—1
—(m+mj+2>i+1)—1)+ (t—1)2m) +2
fE+1,2t-1,1)+ 1.



Similarly, for i =1,2,....,m—1and 1 <t < j/2,
F,2t—1,2) = f(i+ 1,2t — 1,2) + 1.

(¢) Fort=1,2,...,5/2,

Jm, 2t —=1,2) = h(ym) = M(Ymtm-1)j+(2t-1))
= (2mj+2m)— (mj+ (2m—1)+ (t — 1)2m)
= @mj+m+1)

—(m+mj+2-1)+(¢—-1)2m)+1
h(z1) — M@y 1-1)j420e-1)) +1
F(1,2t—1,1) + 1.

(d) Fort=1,2,...,(j —2)/2,

f(m,2t —=1,1) = h(zm) = MTmim-1)j+@2t-1))
(2mj +2m) — (m+mj+ 2m —1)+ (t —1)2m)
= 2mj+m+1)+m—-1—-m
—(mj+2-1)+(t+1)—1)2m)+2
h(y1) = "(Yms-(1—1)j+2e41))) + 1
1,2t 41,2) + 1.

(e) The last number,

f(l, 172) = T1 = Tm4(1-1)j+1
= 2mj+m+1)—(mji+2-1)+(1—1)2m) =m+ mj.

Similarly, the mj numbers in the sequence

f(mvjal)’ f(mflaja]-)a f(]-?]al)’
f(m,j72)7 f(m_13j72)3 f(17]a2)7
f(m7]_271)7 f(m_laj_271)7 f(17j_271)7
f(mvj_za )7 f(m_laj_272)a f(lvj_zaz)a
f(m7271)7 f(m_17271)7 f(17271)7
f(m,2,2), flm—1,2,2), £(1,2,2).

represent the numbers

m+mj+1,m+mj+2,...,m+2mj,

10



since

Fomg 1) = mmitl,
F6,261) = fl+1L261) +1fori=1,2,...,m—1,
f(4,2t,2) = f(i+1,26,2)+1fori=1,2,...,m—1,
f(m,2t,2) = fL2t1)+1fort=1,2...,5/2
Fm,2t,1) = f(1,264+2,2)+1fort=1,2,....(j — 2)/2,
F(1,2,2) = m+2mj.

(#i7) (m even, j odd):

It can be shown as in the previous case that the m(j 4+ 1) numbers in
the sequence

f(muja 1)7 f( -1 ]7 )a (1 ]a )7
f(m,ja2)7 f( -1 ]72)a o (1 .73 )7
f(mvj_271)7 f( _1.7 271)7 f(]-] 271)7
f(mvj_2a2)7 f( _1.7 272)a f(lj 2a2)7
f(m7171)a f(m_17171)7 f(]-v]-71)a
f(m,1,2), fim—1,1,2), f(1,1,2).

represent the numbers

m+1,m+2,...,2m+ mj,

since
fmg1) = me1,
f@,2t—1,1) = fi+1,20—1,1)+1
fori=1,2,....m—Tland 1 <t < (j+1)/2,
F@,2t—-1,2) = fi+1,2t—1,2)+1
fori=1,2,....m—1land 1 <t < (j+1)/2,
Fm2t—1,2) = fL,2t+1,1)+1fort=1,2,...,(j —1)/2,
Fm2t—1,1) = f(1,2t+1,2)+1fort=12...,(j—3)/2
£(1,2,2) = 2m+2mj.

11



And, the m(j — 1) numbers in the sequence

f(m7j_171)7 f(m_laj_171)7 . f(17j_171)7
f(mm? - 1a2)7 f(m 1).7 - 172)a . f(17.] - 1a2)7
f(m7.7_3a1)a f(m_la.] 371)a : f(17.7_3v1)7
f(m7j73a2)a f(mfla] 372)a : f(17j73v2)7
f(m72a1)a f(m_172 1)a f(172a 1))
f(m7272)a f(m_172 2)7 f(17272)
represent the numbers
2m+mj+ 1.2m+mj + 2,...,m + 2my,
since
f(mvj_]-vl) = 2m+m]+17
f(i,2t,1) = fli+1,261)+1
fori=1,2,....m—land 1 <t < (j—-1)/2,
F(i,26,2) = f(i+1,2t,2)+1
fori=1,2,....m—land 1<t < (j—1)/2,
fm,2t,2) = fL,2t,1)+1fort=1,2,...,(j—1)/2
fm,2t,1) = f(1,2t+2,2)+1fort=1,2,...,(j —3)/2,
f(1,2,2) = m+2mj.

Theorem 2. For m > 3, (C;n’j)a = 2 where j > 1.

Proof. The proof follows from Lemmas 0 and B, and Observation 0.

3 Trees with a-deficits

In this section, we have relied on the results of Brinkmann et al. in [1].

Conjecture 2. If Ap =2k + 1, then agef(T) < k.

Conjecture 3. For all £ > 1 and for all 2 < j

~
<

2%k,

adef(cék—t-l,j) = k.

Lemma 3. For £ > 1 and 2 < j < 2k,

Qde f (Cékﬂ,j) < k.

12

O



Proof. Consider the graph C;n,j with m = 2k 4+ 1. Let the vertices be
Loy L1, L2+« Tmy Tm1, xm-&-?a DR axm+mj

where 1z is the central vertex with degree m, each of the vertices x1, 2, ..., Tm
has degree j+1, and Zy41, Tm+2; - - - s Tm4m; are the pendant vertices. Con-
sider the vertex labeling h with h(zg) = 0, h(z;) = mj+ifori=1,2,...,m
and

22—+ (r—1)m, for1<i<m,1<r<j—1;
h(T g (i-1)j+r)

(2i—1)4+(G—-1m, forl<i<m-—k.
Similar to the m-odd case of Lemma [, the vertices

Loy L1y, L2y ,CL’m,ZL'm+1, (Em+2, v 7xm+mjfk

have distinct labels from 0,1,2,...,m + mj. Similar to the m-odd case
of Lemma B, all edges have distinct labels except that the labels for the k
edges (Zi, Tyt (i—1)j4;) Withi = m—k+1,m—k+2,...,m are missing. [

Proposition 1. For £ > 1 and 2 < j < 2k,
ages (Capp1,;) > 0.

Proof. Let G = Cj, ; where m = 2k + 1 with vertices

T, L1, T2, ... 7xma$m+1axm+2; .o 7xm+mj

where xg is the central vertex with degree m and Tp,41, Tm+2,-- - Tmtmj
are the pendant vertices. Assume that G has an «-labeling ¢. Then, the
sum of all edge-labels,

m+mj
S = Z i=(m+mj)im+mj+1)/2=0 (mod m).
i=1
By Remark B1 of Brinkmann et al. [1], let the vertices z; for i =
1,2,...,m be labeled with mj + ¢, respectively. The remaining numbers
0,1,2,...,mj label 2y and the pendant vertices. For any choice of ¢(zq) €

{E), 71, é, ...,mj}, we have
Sio= D () = Lzo)) = D (E(w:)) = Y (Ux0))
i=1 i=1 i=1
m?j +m(m+1)/2 — mé(xo)
0 (mod m).

13



Since ¢ is an a-labeling, for ¢ = 1,2,...,m and t = 1,2,...,7, the
pendant vertices x,,, (;—1)j4+¢ are labeled in such a way that

m
Sy = ZZ (i) = U(Tmy(ie 1)]+t))

= jZﬁ(xi)—ZZ (Tt (1-1)5+1))

=1 =1 t=1

= 0 (modm), (since S=S5;+4 53 and S, =0 (mod m))

implying

Z Z Tt (i-1)j+t)) =0 (mod m),

=1 t=

—

which holds only if ¢(z¢) is chosen from the mj + 1 labels 0,1,...,mj in
such a way that
£(x9) =0 (mod m).

Suppose £(xg) = 0. Then the edge-labels of (xg,x;) for i =1,2,...,m
are
mj+1,mj+2,....,mj+m.

Since the labels less than mj + 1 must still be used, we may determine the
following locations for vertex labels in order:

1 can only label a vertex attached to x1, adding mj to the set of edge-
labels,

2 can only label a vertex attached to z1, adding mj — 1 to the set of
edge-labels,

j can only label a vertex attached to x1, adding mj — (j — 1) to the set
of edge-labels.

All the pendant vertices attached to x; are labeled and j + 1 cannot be
used to label any pendant vertex attached to x; for i = 2,3,..., m. Hence

Let ¢(zg) = tm with 1 < ¢t < j. Then the edge-labels of (zg,x;) for
1=1,2,...,m are

mj—mt+1,mj—mt+2,...,mj —mt+m.

As above, we may determine the locations of certain vertex labels:

The only way to add edge-label m + mj is to use 0 to label a vertex
attached to x,,,

The only way to add edge-label m +mj — 1 is to use 1 to label a vertex
attached to z,,,

14



The only way to add edge-label m+mj — (5 — 1) is to use j — 1 to label
a vertex attached to xz,,.

All the pendant vertices attached to x,, are labeled and the labels used
are 0,1,2,...,7 — 1. But the only way to add the edge-label m +mj — j is
touser € {0,1,2,...,7j — 1} to label a pendant vertex attached to z,,—j4r
so that

g((Em,jJﬂn)—T:mj'f‘(m_j""r)_r:m"_mj_jv

which is impossible. Hence, we have a contradiction to our assumption that
G has an a-labeling. O

4 Concluding remarks

In this paper, we have given an example of constructing a graph with a
graceful, bipartite labeling which can be decomposed into two isomorphic
edge-disjoint trees consisting of a root node of degree m, each of whose
neighbours is connected to j (j > 1) leaves.

This result is a special case of the conjecture that for every tree T', two
copies of T' can be packed into a graph with a graceful, bipartite labeling.
The result remotely connects to the graceful tree conjecture which states
that all trees are graceful. We have also explored the extent to which a
bipartite labeling falls short of gracefulness.

Acknowledgements

We would like to thank the anonymous referee for the helpful suggestions
concerning the presentation of the paper.

References

[1] G. Brinkmann, S. Crevals, H. Mélot, L. Rylands, and E. Steffen, a-
labelings and the Structure of Trees with Nonzero a-deficit, Discrete
Math. Theoretical Comp. Science, 14:1 (2012), 159-174.

[2] S.El-Zanati, H.-L. Fu, and C.-L. Shiue, A note on the -labeling number
of bipartite graphs, Discrete Math., 214 (2000), 241-243.

[3] J. A. Gallian. A Dynamic Survey of Graph Labeling, Electronic Journal
of Combinatorics, 19 (2012), #DS6.

15



[4] A. Rosa. On certain valuations of the vertices of a graph, Théorie des
graphes, Journées internationales d’étude, Rome (1966), 349-355.

[5] A. Rosa, B. Siran. Bipartite labelings of trees and gracesize. J. Graph
Theory, 19 (1995), 201-205.

[6] C.-L. Shiue, H. -L. Fu. a-labeling number of trees, Discrete Math., 306
(2006), 3290-3296.

[7] C.-L. Shiue, H. -C. Lu. Trees Which Admit No a-labelings, Ars Com-
binatoria, 103 (2012), 453-463.

[8] H. Snevily, New families of graphs that have a-labeling, Discrete Math.,
170 (1997), 185-194.

[9] S.-L. Wu, A necessary condition for the existence of an «-labeling,
preprint.

16



	Introduction
	-labeling number of comets
	Construction for (Cm,j) where m3 and j1

	Trees with -deficits
	Concluding remarks

