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Abstract

A Roller Coaster permutation is a permutation, along with all
of its subsequences, that changes from increasing to decreasing (and
vice versa) a maximum number of times. We offer a few conjectures
(enumerative as well as structural) along with data describing some
surprising properties of these permutations.

1 Introduction

A permutation π of [n] = {1, 2, . . . , n} is a sequence (π1, π2, . . . , πn). We
omit commas and parenthesis when doing so produces no ambiguity. Let
Sn denote the set of all permutations of [n]. Now, we define the following
(a sequence of contiguous numbers means at least ‘two numbers’), where
for a word x, |x| denotes the number of letters in x:

i(π) = # increasing sequences of contiguous numbers in π,

d(π) = # decreasing sequences of contiguous numbers in π,

id(π) = i(π) + d(π),

X(π) = {τ : τ is a subsequence of π such that |τ | > 3} ,

t(π) =
∑

τ∈X(π)

id(τ).
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For example,

t(2143) = id(2143) + id(214) + id(213) + id(243) + id(143)

= 3 + 2 + 2 + 2 + 2 = 11 and

t(1234) = id(1234) + id(123) + id(124) + id(134) + id(234)

= 1 + 1 + 1 + 1 + 1 = 5.

A permutation π ∈ Sn is called a Roller Coaster permutation if t(π) =
maxτ∈Sn

t(τ). In this paper, we explore properties that enumerate and
characterize Roller Coaster permutations.

2 Results on Roller Coaster permutations

Let RC(n) be the set of Roller Coaster permutations in Sn. If π ∈ RC(n),
then the reverse of π is also in RC(n). Similarly, π∗ = (n + 1− π1, n + 1−
π2, . . . , n+1−πn), the ‘mod n+1’ complement of π, is also in RC(n). Let
tmax(n) be defined as maxπ∈Sn

t(π). We have the following experimental
results for n = 3, 4, . . . , 24 (conjectured values and lower bounds are in
italics):

tmax : [2, 11, 37, 106, 270, 653, 1523, 3480, 7768, 17123, 37405, 81350 ,

174954 , 374409 , 798471 , 1700036 , 3596124 , 7588303 ,

15970785 , 33596706 , 70310126 , 146867861 ].

Here, we provide RC(n) for 3 6 n 6 9 (and RC(n) for 10 6 n 6 13 are
provided in Appendix A):

RC(3) = {132, 213, 231, 312},
RC(4) = {2143, 2413, 3142, 3412},
RC(5) = {24153, 25143, 31524, 32514, 34152, 35142, 41523, 42513},
RC(6) = {326154, 351624, 426153, 451623},
RC(7) = {3517264, 3527164, 3617254, 3627154, 4261735, 4271635,

4361725, 4371625, 4517263, 4527163, 4617253, 4627153,
5261734, 5271634, 5361724, 5371624},

RC(8) = {43718265, 46281735, 53718264, 56281734},
RC(9) = {471639285, 471936285, 472639185, 472936185, 481639275,

481936275, 482639175, 482936175, 528174936, 528471936,
529174836, 529471836, 538174926, 538471926, 539174826,
539471826, 571639284, 571936284, 572639184, 572936184,
581639274, 581936274, 582639174, 582936174, 628174935,
628471935, 629174835, 629471835, 638174925, 638471925,
639174825, 639471825}.
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A permutation π be called alternating and reverse-alternating if π1 <
π2 > · · · and π1 > π2 < · · · , respectively. Clearly, for n > 3 and π ∈ Sn,
we have id(π) 6 n − 1 and

tmax(n) 6

n
∑

k=3

(

n

k

)

(k − 1).

Based on the data above, one can make the following conjectures:

Conjecture 2.1. If π ∈ RC(n), then π is alternating or reverse-alternating.

Conjecture 2.2. There exists π ∈ RC(n), such that π1 = ⌊n/2⌋ and
πn = ⌊n/2⌋ + 1.

Let ft(π) be obtained from π by swapping πi and πn−i+1 for t + 1 6

i 6 ⌊n/2⌋. For example, f2(43718265) = 43281765. Note that f0(π) is the
plain reverse of π.

Lemma 2.1. If π ∈ RC(n) where n = 2k and Conjecture 2.2 is true, then
f1(π) ∈ RC(n).

Proof. Consider π = (k, π2, π3, . . . , πn−1, k + 1) ∈ RC(n) where k = ⌊n/2⌋.
Suppose τ = (s1, s2, . . . , si) is a subsequence of π where 0 6 i 6 n−2. Now
we have the following four cases:

(i) If τ involves neither k nor k + 1, then

id(s1, s2, . . . , si) = id(si, si−1, . . . , s1).

(ii) If τ involves only k, then

id(k, s1, s2, . . . , si) = id(si, si−1, . . . , s1, k) = id(si, si−1, . . . , s1, k+1),

where the last equality results from k and k+1 being indistinguishable
in the context. Since the last term in both π and f1(π) is k + 1,
subsequences involving k in π has as many runs as subsequences in
f1(π) invloving k + 1.

(iii) If τ invloves only k + 1, then the argument is similar as case (ii).

(iv) If τ involves both k and k+1, then since k and k+1 are indistinguish-
able, we have id(k, π2, . . . , πn−1, k + 1) = id(k, πn−1, . . . , π2, k + 1).

Therefore, t(f1(π)) = tmax(n) and hence f1(π) ∈ RC(n).

Conjecture 2.3. For n > 3,

|RC(n)| =

{

4 if n = 2k,
2j where j 6 k + 1 if n = 2k + 1.
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If n = 2k, k > 2, and π ∈ RC(n), then using Lemma 2.1 and the fact
that reverse of a Roller Coaster permutation is also Roller Coaster, we get
the following permutations in RC(n):

π, f0(π), f1(π), f0(f1(π)),

that is, |RC(n)| > 4 if n = 2k and k > 2.
For example, given 326154 ∈ RC(6), we obtain
f0(326154) = 451623,
f1(326154) = 351624,
f0(f1(326154)) = f0(351624) = 426153.

Conjecture 2.4 (The Odd Sum conjecture). If π ∈ RC(n) and n = 2k+1,
then πj + πn−j+1 is odd for 1 6 j 6 k. If π ∈ RC(n) and n = 2k, then
πj + πn−j+1 = 2k + 1 for all 1 6 j 6 k.

Conjecture 2.5. If π = (π1, π2, . . . , πn) ∈ RC(n), then RC(n) can be
completely determined from π.

Let gL(π) be obtained from π by swapping πi and πn−i+1 for each i ∈ L
where 1 6 i 6 ⌊n/2⌋. For example, g{2,3,4}(471639285) = 482936175.

If n = 2k + 1, π ∈ RC(n), and Conjecture 2.3 is true, then we believe
RC(n) consists of 2j (j 6 k + 1) permutations from the 2k+1 permutations
obtained by taking L as each element in the set P({1, 2, . . . , k}) (the power
set of {1, 2, . . . , k}), and the ‘mod n + 1’ complement of each of these 2k

permutations. This algorithm works for n = 3, 5, 7, 9, and 11 where all
Roller Coaster permutations are enumerated, that is,

|RC(2k + 1)| = 2k+1 for k = 1, 2, 3, 4, 5.

For example, given π = 3517264 ∈ RC(7), we obtain

1. g∅(π) = 3517264; g∅(π)∗ = 5371624,

2. g{1}(π) = 4517263; g{1}(π)∗ = 4371625,

3. g{2}(π) = 3617254; g{2}(π)∗ = 5271634,

4. g{3}(π) = 3527164; g{3}(π)∗ = 5361724,

5. g{1,2}(π) = 4617253; g{1,2}(π)∗ = 4271635,

6. g{1,3}(π) = 4527163; g{1,3}(π)∗ = 4361725,

7. g{2,3}(π) = 3627154; g{2,3}(π)∗ = 5261734, and

8. g{1,2,3}(π) = 4627153; g{1,2,3}(π)∗ = 4261735.
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Given π ∈ S2k+1, define:

g(π) = {τ, τ∗ : gL(π) = τ for some L ∈ P({1, 2, . . . , k})}

RC(π) =

{

τ : τ ∈ g(π) and t(τ) = max
σ∈g(π)

t(σ)

}

.

Here τ∗ is the ‘mod 2k + 2’ complement of τ . Note that, RC(n) is
different from RC(π) as the latter is the set of all permutations in g(π)
(instead of Sn) with maximal t.

2.1 Fast computation of lower bounds of tmax(n)

In this section, we propose a very fast algorithm to compute a permutation
π ∈ Sn such that t(π) gives a lower bound for tmax(n). The following
heuristics act as a guide for the algorithm proposed in this section:

• π satisfies Conjecture 2.1,

• π satisfies Conjecture 2.2, and

• π satisfies Conjecture 2.4.

2.1.1 n = 2k:

Lower bound of tmax(2k) can be computed from a τ ∈ Sk−1 by obtaining
a permutation π ∈ S2k as follows:

πi =















k if i = 1,
k + 1 if i = 2k,
τj if i = 2j + 1 for 1 6 j 6 k − 1,
n + 1 − τk−j if i = 2j for 1 6 j 6 k − 1.

Here τk−j represents πn−i+1 when i = 2j + 1 for 1 6 j 6 k − 1.

1. For k = 7, τ = 351624 ∈ RC(6) gives

π = (7, 11, 3, 13, 5, 9, 1, 14, 6, 10, 2, 12, 4, 8) ∈ S14

with tmax(14) > 81350.

We observe that

t(f0(π)) = t(f1(π)) = t(f0(f1(π))) = 81350.
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2. For k = 8, τ = 4261735 ∈ RC(7) gives

π = (8, 12, 4, 14, 2, 10, 6, 16, 1, 11, 7, 15, 3, 13, 5, 9) ∈ S16

with tmax(16) > 374409.

We observe that

t(f0(π)) = t(f1(π)) = t(f0(f1(π))) = 374409.

3. For k = 9, τ = 46281735 ∈ RC(8) gives

π = (9, 14, 4, 16, 6, 12, 2, 18, 8, 11, 1, 17, 7, 13, 3, 15, 5, 10) ∈ S18

with tmax(18) > 1699748.

We observe that

t(f0(π)) = t(f1(π)) = t(f0(f1(π))) = 1699748.

See Section 2.2 for slight improvement in this bound.

4. For k = 10, τ = 528471936 ∈ RC(9) gives

π = (10, 15, 5, 18, 2, 12, 8, 20, 4, 14, 7, 17, 1, 13, 9, 19, 3, 16, 6, 11) ∈ S20

with tmax(20) > 7588303.

We observe that

t(f0(π)) = t(f1(π)) = t(f0(f1(π))) = 7588303.

5. For k = 11, τ = (5, 8, 2, 10, 4, 7, 1, 9, 3, 6) ∈ RC(10) gives

π = (11, 17, 5, 20, 8, 14, 2, 22, 10, 16, 4, 19, 7, 13, 1, 21, 9, 15, 3, 18, 6, 12)

in S22 with tmax(22) > 33596706.

We observe that

t(f0(π)) = t(f1(π)) = t(f0(f1(π))) = 33596706.

6. For k = 12, τ = (6, 3, 9, 1, 11, 5, 8, 2, 10, 4, 7) ∈ RC(11) gives the fol-
lowing π ∈ S24

(12, 18, 6, 21, 3, 15, 9, 23, 1, 17, 11, 20, 5, 14, 8, 24, 2, 16, 10, 22, 4, 19, 7, 13)

with tmax(24) > 146867861.

We observe that

t(f0(π)) = t(f1(π)) = t(f0(f1(π))) = 146867861.
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2.1.2 n = 2k + 1:

Lower bound of tmax(2k +1) can be computed from a τ ∈ Sk and ρ ∈ Sk−1

by obtaining a permutation π ∈ S2k+1 as follows:

πi =















k if i = 1,
k + 1 if i = 2k + 1,
τj + k + 1 if i = 2j for 1 6 j 6 k,
ρj if i = 2j + 1 for 1 6 j 6 k − 1.

1. For k = 7, τ = 3517264 ∈ RC(7) and ρ = 326154 ∈ RC(6) give

π = (7, 11, 3, 13, 2, 9, 6, 15, 1, 10, 5, 14, 4, 12, 8) ∈ S15

with tmax(15) > 174954.

We observe that

t(π) = max
σ∈g(π)

t(σ) = 174954 and |RC(π)| = 128 = 27.

2. For k = 8, τ = 43718265 ∈ RC(8) and ρ = 3517264 ∈ RC(7) give

π = (8, 13, 3, 12, 5, 16, 1, 10, 7, 17, 2, 11, 6, 15, 4, 14, 9) ∈ S17

with tmax(17) > 798471.

We observe that

t(π) = max
σ∈g(π)

t(σ) = 798471 and |RC(π)| = 128 = 27.

3. For k = 9, τ = 471639285 ∈ RC(9) and ρ = 43718265 ∈ RC(8) give

π = (9, 14, 4, 17, 3, 11, 7, 16, 1, 13, 8, 19, 2, 12, 6, 18, 5, 15, 10) ∈ S19

with tmax(19) > 3596124.

We observe that

t(π) = max
σ∈g(π)

t(σ) = 3596124 and |RC(π)| = 256 = 28.

4. For k = 10, τ = (5, 3, 9, 1, 7, 4, 10, 2, 8, 6) ∈ RC(10) and ρ = 471639285 ∈
RC(9) give

π = (10, 16, 4, 14, 7, 20, 1, 12, 6, 18, 3, 15, 9, 21, 2, 13, 8, 19, 5, 17, 11) ∈ S21

with tmax(21) > 15970785. We observe that

t(π) = max
σ∈g(π)

t(σ) = 15970785 and |RC(π)| = 128 = 27.

7



5. For k = 11, τ = (5, 8, 2, 10, 1, 7, 4, 11, 3, 9, 6) ∈ RC(11) and ρ =
(5, 3, 9, 1, 7, 4, 10, 2, 8, 6) ∈ RC(10) give the following π ∈ S23

(11, 17, 5, 20, 3, 14, 9, 22, 1, 13, 7, 19, 4, 16, 10, 23, 2, 15, 8, 21, 6, 18, 12)

with tmax(23) > 70310126. We observe that

t(π) = max
σ∈g(π)

t(σ) = 70310126 and |RC(π)| = 256 = 28.

2.2 Choosing τ and ρ optimally

The above algorithm produces a lower bound of tmax(n) using a suitable
choice of τ and ρ. In the case of tmax(18), David Callan shows that taking
τ = 47261835 ∈ S8 (note that τ 6∈ RC(8) as t(τ) = 651 < tmax(8)) gives

π = (9, 14, 4, 16, 7, 11, 2, 18, 6, 13, 1, 17, 8, 12, 3, 15, 5, 10) ∈ S18

with tmax(18) > 1700036, which is slightly better than the bound that
can be obtained by taking a τ ∈ RC(8). So it is not necessarily optimal
to choose an optimal τ ∈ RC(k − 1). Again, if n = 2k + 1, then we
may let τ be the lexicographically least element of RC(k) and let ρ be the
lexicographically least element in RC(k−1). It remains open how to choose
τ and ρ optimally.

3 tmax considering only subsequences of spe-

cific length

Here we consider a variant of tmax defined as follows:

X(ℓ, π) = {τ : τ is a subsequence of π such that |τ | = ℓ} ,

t(ℓ, π) =
∑

τ∈X(ℓ,π)

id(τ),

tmax(ℓ, n) = max
π∈Sn

t(ℓ, π),

RC(ℓ, n) = {π ∈ Sn : t(ℓ, π) = tmax(ℓ, n)} .

We have some experimental data on tmax(k, n) based on which we have
the following few conjectures:
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ℓ/n 3 4 5 6 7 8 9 10
3 2 8 19 38 65 104 154 220
4 3 14 41 93 184 328 541
5 4 22 75 194 430 852
6 5 32 124 363 894
7 6 44 191 622
8 7 58 279
9 8 74

10 9

Conjecture 3.1. The lexicographically smallest permutation in RC(n −
1, n) is given by

πi =

{

2j − 1 if i = 2j, 1 6 j 6 k,
2j if i = 2j − 1, 1 6 j 6 k − 1,

with (πn−1, πn) = (2k, 2k − 1) if n = 2k, and (πn−2, πn−1, πn) = (2k +
1, 2k − 1, 2k) if n = 2k + 1. For example, 21436587 and 214365978 are the
lexicographically smallest permutations in RC(7, 8) and RC(8, 9), respec-
tively.

Claim 3.1. Assuming Conjecture 3.1 is true, we have for n > 4,

tmax(n − 1, n) = (n − 1)(n − 2) + 2.

Proof. Take the lexicographically smallest permutation π ∈ RC(n − 1, n).
For both the parities of n, π is reverse-alternating. Suppose n = 2k. There
are

(

n
n−1

)

= n subsequences of π each of length n−1, contribute to tmax(n−
1, n) as follows:

tmax(n − 1, n) =
∑

τ=π\{a},

a∈{2,1,2k,2k−1}

id(τ) +
∑

τ=π\{a},

a6∈{2,1,2k,2k−1}

id(τ),

= 4(n − 2) + (n − 4)(n − 3) = (n − 1)(n − 2) + 2.

If n = 2k + 1, then the argument is similar as above.

Fact 3.1 (Myers [4]). The lexicographically smallest permutation in RC(3, n)
is

1. (k, k − 1, . . . , 1, 2k, 2k − 1, . . . , k + 1) if n = 2k, and

2. (k, k − 1, . . . , 1, 2k + 1, 2k, 2k − 1, . . . , k + 1) if n = 2k + 1.

Lemma 3.1. For n > 3,

tmax(3, n) =

{

k(k − 1)(7k − 2)/3 if n = 2k,
k(14k2 + 3k − 5)/6 if n = 2k + 1

9



Proof. If n = 2k, take an optimal permutation π = (k, k−1, . . . , 1, 2k, 2k−
1, . . . , k + 1) ∈ RC(3, 2k). Considering length-three subsequences τ of π,
we have,

tmax(3, 2k) = t(3, π)

=
∑

τ=abc,
a>b>c

id(τ) +
∑

τ=abc,
a>b<c

id(τ) +
∑

τ=abc,
a<b>c

id(τ)

= 2

(

k

3

)

· 1 +

(

k

2

)

k · 2 + k

(

k

2

)

· 2

= k(k − 1)(7k − 2)/3.

If n = 2k + 1, take an optimal permutation π = (k, k − 1, . . . , 1, 2k +
1, 2k, 2k − 1, . . . , k + 1) ∈ RC(3, 2k + 1). Considering length-three subse-
quences τ of π, we have,

tmax(3, 2k + 1) = t(3, π)

=
∑

τ=abc,
a>b>c

id(τ) +
∑

τ=abc,
a>b<c

id(τ) +
∑

τ=abc,
a<b>c

id(τ)

=

[(

k

3

)

+

(

k + 1

3

)]

· 1 +

(

k

2

)

(k + 1) · 2 + k

(

k + 1

2

)

· 2

= k(14k2 + 3k − 5)/6.

Conjecture 3.2 (Myers [4]). For j > 3, tmax(j + 1, n) is given by the
following permutation in Sn

⌊n

j

⌋

,
⌊n

j

⌋

−1, . . . , 1,
⌊2n

j

⌋

,
⌊2n

j

⌋

−1,
⌊n

j

⌋

+1, . . . , n, n−1, . . . ,
⌊ (j − 1)n

j

⌋

+1.

Permutations in Conjecture 3.2 are examples of so-called layered per-
mutations.

4 Circular variant of Roller Coaster permu-

tations

Given π ∈ Sn, let si(π) be the permutation obtained from π after cyclically
shifting i times to the right. Let us define the following:

Y (π) =
n−1
⋃

i=0

{si(π)} and ct(π) =
∑

τ∈Y (π)

t(τ).
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For example, ct(1324) = t(1324)+t(4132)+t(2413)+t(3241) = 9+10+
11 + 10 = 40. Let ctmax(n) be defined as maxπ∈Sn

ct(π). A permutation
π ∈ Sn is called a Circular Roller Coaster permutation if ct(π) = ctmax(n).
Clearly,

ctmax(n) 6 n

n
∑

k=3

(

n

k

)

· (k − 1).

We have the following experimental results for 3 6 n 6 13:

ctmax : [5, 40, 168, 592, 1783, 5040, 13106, 33472, 82417, 200536, 471628]

Obviously, ctmax(n)/n 6 tmax(n).

5 Connections with the partition number of

a permutation

Given non-negative integers r and s, a permutation π has an (r, s)-partition
if it can be partitioned into r increasing subsequences and s decreasing
subsequences. We separate blocks of a partition by ‘|’ and in each block,
the relative order of integers is maintained as in π. For example, 51234
has (1, 1)-partitions 51|234, 52|134, 53|124, 54|123, and 5|1234. As in the
last case, a single number in a block of partition can be considered as a
decreasing (or increasing) subsequence. Define:

P (r, s) = {π : π has an (r, s)-partition} ,

p(π) = min {m : m = r + s and π ∈ P (r, s)} ,

pmax(n) = max
π∈Sn

p(π), and

PS(n) = {τ : p(τ) = pmax(n)} .

Here, p(π) is called the partition number of the permutation π. For
example, τ = 2143 6∈ P (1, 1) ∪ P (0, 1) ∪ P (1, 0), but is in P (0, 2) ∩ P (2, 0),
and so p(τ) = 2. Wagner [6] proved that given a permutation π ∈ Sn, the
decision problem, ‘can π be partitioned into m monotone subsequences?’,
is NP-Complete.

Let π ∈ Sn be called an extension of τ ∈ Sm (where m 6 n) if τj = πt+j

for some t with 0 6 t 6 n − m.

Conjecture 5.1. For π ∈ Sn, p(π) 6 ⌈n/2⌉.

Observation 5.1. Here we present some computed values of pmax(n) for
3 6 n 6 10:

pmax : [2, 2, 2, 3, 3, 3, 3, 4].
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n Example permutation PS(n) ∩ RC(n) 6= ∅
3 132 Y es
4 2143 Y es
5 24153 Y es
6 326145 No
7 3517264 Y es
8 43718265 Y es
9 471639285 Y es
10 {5, 3, 9, 1, 7, 4, 10, 2, 6, 8} No

Question 5.1. For which n, RC(n) ∩ PS(n) is non-empty?

6 Connections with forbidden subpermuta-

tions

Given π ∈ Sn and σ ∈ Sm with m 6 n, we say that π contains the
subpermutation σ if there exists φ : {1, 2, . . . ,m} → {1, 2, . . . , n} such that
π(φ(i)) < π(φ(j)) if and only if σ(i) < σ(j). For example, 532687941
contains 2143 because of its subsequence 5387. If π does not contain τ ,
then we say, π avoids τ (see Kitaev [3] for a comprehensive source of results
obtained so far on pattern-avoiding permutations). Define:

Sn(σ) = {π ∈ Sn : π avoids σ} ,

S(σ) =

∞
⋃

n=1

Sn(σ).

Since 2143 has no (1, 1)-partition, any permutation that contains 2143,
for example 532687941, has no (1, 1)-partition. Let F (r, s) be defined as
follows:

F (r, s) = minimal {σ : π ∈ P (r, s) if and only if π ∈ S(σ)} .

Elements of F (r, s) are called forbidden permutations with respect to r
and s. Stankova [5] observed that F (1, 1) is precisely the set {2143, 3412}.
Kézdy et al. [2] showed that F (r, s) is always finite.

Question 6.1. For which r does there exist an n such that RC(n)∩F (r, r)
is non-empty?

7 A theoretical question

We observe from the exact and conjectured values of tmax(n) that the values
of the ratio tmax(n + 1)/tmax(n) for 4 6 n 6 23, in order, are:
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[3.364, 2.865, 2.547, 2.419, 2.332, 2.285, 2.232, 2.204, 2.184, 2.175,

2.151, 2.140, 2.133, 2.129, 2.115, 2.110, 2.105, 2.104, 2.093, 2.089]

Question 7.1. Does the limit

lim
n→∞

tmax(n + 1)

tmax(n)

exist and does it equal to 2?
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A RC(n) for 10 6 n 6 13

RC(10) = {(5, 3, 9, 1, 7, 4, 10, 2, 8, 6), (5, 8, 2, 10, 4, 7, 1, 9, 3, 6),
(6, 3, 9, 1, 7, 4, 10, 2, 8, 5), (6, 8, 2, 10, 4, 7, 1, 9, 3, 5)};

RC(11) = {(5, 8, 2, 10, 1, 7, 4, 11, 3, 9, 6), (5, 8, 2, 10, 4, 7, 1, 11, 3, 9, 6),
(5, 8, 2, 11, 1, 7, 4, 10, 3, 9, 6), (5, 8, 2, 11, 4, 7, 1, 10, 3, 9, 6),
(5, 8, 3, 10, 1, 7, 4, 11, 2, 9, 6), (5, 8, 3, 10, 4, 7, 1, 11, 2, 9, 6),
(5, 8, 3, 11, 1, 7, 4, 10, 2, 9, 6), (5, 8, 3, 11, 4, 7, 1, 10, 2, 9, 6),
(5, 9, 2, 10, 1, 7, 4, 11, 3, 8, 6), (5, 9, 2, 10, 4, 7, 1, 11, 3, 8, 6),
(5, 9, 2, 11, 1, 7, 4, 10, 3, 8, 6), (5, 9, 2, 11, 4, 7, 1, 10, 3, 8, 6),
(5, 9, 3, 10, 1, 7, 4, 11, 2, 8, 6), (5, 9, 3, 10, 4, 7, 1, 11, 2, 8, 6),
(5, 9, 3, 11, 1, 7, 4, 10, 2, 8, 6), (5, 9, 3, 11, 4, 7, 1, 10, 2, 8, 6),
(6, 3, 9, 1, 8, 5, 11, 2, 10, 4, 7), (6, 3, 9, 1, 11, 5, 8, 2, 10, 4, 7),
(6, 3, 9, 2, 8, 5, 11, 1, 10, 4, 7), (6, 3, 9, 2, 11, 5, 8, 1, 10, 4, 7),
(6, 3, 10, 1, 8, 5, 11, 2, 9, 4, 7), (6, 3, 10, 1, 11, 5, 8, 2, 9, 4, 7),
(6, 3, 10, 2, 8, 5, 11, 1, 9, 4, 7), (6, 3, 10, 2, 11, 5, 8, 1, 9, 4, 7),
(6, 4, 9, 1, 8, 5, 11, 2, 10, 3, 7), (6, 4, 9, 1, 11, 5, 8, 2, 10, 3, 7),
(6, 4, 9, 2, 8, 5, 11, 1, 10, 3, 7), (6, 4, 9, 2, 11, 5, 8, 1, 10, 3, 7),
(6, 4, 10, 1, 8, 5, 11, 2, 9, 3, 7), (6, 4, 10, 1, 11, 5, 8, 2, 9, 3, 7),
(6, 4, 10, 2, 8, 5, 11, 1, 9, 3, 7), (6, 4, 10, 2, 11, 5, 8, 1, 9, 3, 7),
(6, 8, 2, 10, 1, 7, 4, 11, 3, 9, 5), (6, 8, 2, 10, 4, 7, 1, 11, 3, 9, 5),
(6, 8, 2, 11, 1, 7, 4, 10, 3, 9, 5), (6, 8, 2, 11, 4, 7, 1, 10, 3, 9, 5),
(6, 8, 3, 10, 1, 7, 4, 11, 2, 9, 5), (6, 8, 3, 10, 4, 7, 1, 11, 2, 9, 5),
(6, 8, 3, 11, 1, 7, 4, 10, 2, 9, 5), (6, 8, 3, 11, 4, 7, 1, 10, 2, 9, 5),
(6, 9, 2, 10, 1, 7, 4, 11, 3, 8, 5), (6, 9, 2, 10, 4, 7, 1, 11, 3, 8, 5),
(6, 9, 2, 11, 1, 7, 4, 10, 3, 8, 5), (6, 9, 2, 11, 4, 7, 1, 10, 3, 8, 5),
(6, 9, 3, 10, 1, 7, 4, 11, 2, 8, 5), (6, 9, 3, 10, 4, 7, 1, 11, 2, 8, 5),
(6, 9, 3, 11, 1, 7, 4, 10, 2, 8, 5), (6, 9, 3, 11, 4, 7, 1, 10, 2, 8, 5),
(7, 3, 9, 1, 8, 5, 11, 2, 10, 4, 6), (7, 3, 9, 1, 11, 5, 8, 2, 10, 4, 6),
(7, 3, 9, 2, 8, 5, 11, 1, 10, 4, 6), (7, 3, 9, 2, 11, 5, 8, 1, 10, 4, 6),
(7, 3, 10, 1, 8, 5, 11, 2, 9, 4, 6), (7, 3, 10, 1, 11, 5, 8, 2, 9, 4, 6),
(7, 3, 10, 2, 8, 5, 11, 1, 9, 4, 6), (7, 3, 10, 2, 11, 5, 8, 1, 9, 4, 6),
(7, 4, 9, 1, 8, 5, 11, 2, 10, 3, 6), (7, 4, 9, 1, 11, 5, 8, 2, 10, 3, 6),
(7, 4, 9, 2, 8, 5, 11, 1, 10, 3, 6), (7, 4, 9, 2, 11, 5, 8, 1, 10, 3, 6),
(7, 4, 10, 1, 8, 5, 11, 2, 9, 3, 6), (7, 4, 10, 1, 11, 5, 8, 2, 9, 3, 6),
(7, 4, 10, 2, 8, 5, 11, 1, 9, 3, 6), (7, 4, 10, 2, 11, 5, 8, 1, 9, 3, 6)};

RC(12) = {(6, 4, 10, 2, 12, 5, 8, 1, 11, 3, 9, 7), (6, 9, 3, 11, 1, 8, 5, 12, 2, 10, 4, 7),
(7, 4, 10, 2, 12, 5, 8, 1, 11, 3, 9, 6), (7, 9, 3, 11, 1, 8, 5, 12, 2, 10, 4, 6)};

RC(13) = {(6, 10, 2, 9, 4, 13, 1, 8, 5, 12, 3, 11, 7), (6, 10, 2, 9, 5, 13, 1, 8, 4, 12, 3, 11, 7),
(6, 10, 2, 12, 4, 8, 1, 13, 5, 9, 3, 11, 7), (6, 10, 2, 12, 5, 8, 1, 13, 4, 9, 3, 11, 7),
(6, 10, 3, 9, 4, 13, 1, 8, 5, 12, 2, 11, 7), (6, 10, 3, 9, 5, 13, 1, 8, 4, 12, 2, 11, 7),
(6, 10, 3, 12, 4, 8, 1, 13, 5, 9, 2, 11, 7), (6, 10, 3, 12, 5, 8, 1, 13, 4, 9, 2, 11, 7),
(6, 11, 2, 9, 4, 13, 1, 8, 5, 12, 3, 10, 7), (6, 11, 2, 9, 5, 13, 1, 8, 4, 12, 3, 10, 7),
(6, 11, 2, 12, 4, 8, 1, 13, 5, 9, 3, 10, 7), (6, 11, 2, 12, 5, 8, 1, 13, 4, 9, 3, 10, 7),
(6, 11, 3, 9, 4, 13, 1, 8, 5, 12, 2, 10, 7), (6, 11, 3, 9, 5, 13, 1, 8, 4, 12, 2, 10, 7),
(6, 11, 3, 12, 4, 8, 1, 13, 5, 9, 2, 10, 7), (6, 11, 3, 12, 5, 8, 1, 13, 4, 9, 2, 10, 7),
(7, 3, 11, 2, 9, 6, 13, 1, 10, 5, 12, 4, 8), (7, 3, 11, 2, 10, 6, 13, 1, 9, 5, 12, 4, 8),
(7, 3, 11, 5, 9, 1, 13, 6, 10, 2, 12, 4, 8), (7, 3, 11, 5, 10, 1, 13, 6, 9, 2, 12, 4, 8),
(7, 3, 12, 2, 9, 6, 13, 1, 10, 5, 11, 4, 8), (7, 3, 12, 2, 10, 6, 13, 1, 9, 5, 11, 4, 8),
(7, 3, 12, 5, 9, 1, 13, 6, 10, 2, 11, 4, 8), (7, 3, 12, 5, 10, 1, 13, 6, 9, 2, 11, 4, 8),
(7, 4, 11, 2, 9, 6, 13, 1, 10, 5, 12, 3, 8), (7, 4, 11, 2, 10, 6, 13, 1, 9, 5, 12, 3, 8),
(7, 4, 11, 5, 9, 1, 13, 6, 10, 2, 12, 3, 8), (7, 4, 11, 5, 10, 1, 13, 6, 9, 2, 12, 3, 8),
(7, 4, 12, 2, 9, 6, 13, 1, 10, 5, 11, 3, 8), (7, 4, 12, 2, 10, 6, 13, 1, 9, 5, 11, 3, 8),
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(7, 4, 12, 5, 9, 1, 13, 6, 10, 2, 11, 3, 8), (7, 4, 12, 5, 10, 1, 13, 6, 9, 2, 11, 3, 8),
(7, 10, 2, 9, 4, 13, 1, 8, 5, 12, 3, 11, 6), (7, 10, 2, 9, 5, 13, 1, 8, 4, 12, 3, 11, 6),
(7, 10, 2, 12, 4, 8, 1, 13, 5, 9, 3, 11, 6), (7, 10, 2, 12, 5, 8, 1, 13, 4, 9, 3, 11, 6),
(7, 10, 3, 9, 4, 13, 1, 8, 5, 12, 2, 11, 6), (7, 10, 3, 9, 5, 13, 1, 8, 4, 12, 2, 11, 6),
(7, 10, 3, 12, 4, 8, 1, 13, 5, 9, 2, 11, 6), (7, 10, 3, 12, 5, 8, 1, 13, 4, 9, 2, 11, 6),
(7, 11, 2, 9, 4, 13, 1, 8, 5, 12, 3, 10, 6), (7, 11, 2, 9, 5, 13, 1, 8, 4, 12, 3, 10, 6),
(7, 11, 2, 12, 4, 8, 1, 13, 5, 9, 3, 10, 6), (7, 11, 2, 12, 5, 8, 1, 13, 4, 9, 3, 10, 6),
(7, 11, 3, 9, 4, 13, 1, 8, 5, 12, 2, 10, 6), (7, 11, 3, 9, 5, 13, 1, 8, 4, 12, 2, 10, 6),
(7, 11, 3, 12, 4, 8, 1, 13, 5, 9, 2, 10, 6), (7, 11, 3, 12, 5, 8, 1, 13, 4, 9, 2, 10, 6),
(8, 3, 11, 2, 9, 6, 13, 1, 10, 5, 12, 4, 7), (8, 3, 11, 2, 10, 6, 13, 1, 9, 5, 12, 4, 7),
(8, 3, 11, 5, 9, 1, 13, 6, 10, 2, 12, 4, 7), (8, 3, 11, 5, 10, 1, 13, 6, 9, 2, 12, 4, 7),
(8, 3, 12, 2, 9, 6, 13, 1, 10, 5, 11, 4, 7), (8, 3, 12, 2, 10, 6, 13, 1, 9, 5, 11, 4, 7),
(8, 3, 12, 5, 9, 1, 13, 6, 10, 2, 11, 4, 7), (8, 3, 12, 5, 10, 1, 13, 6, 9, 2, 11, 4, 7),
(8, 4, 11, 2, 9, 6, 13, 1, 10, 5, 12, 3, 7), (8, 4, 11, 2, 10, 6, 13, 1, 9, 5, 12, 3, 7),
(8, 4, 11, 5, 9, 1, 13, 6, 10, 2, 12, 3, 7), (8, 4, 11, 5, 10, 1, 13, 6, 9, 2, 12, 3, 7),
(8, 4, 12, 2, 9, 6, 13, 1, 10, 5, 11, 3, 7), (8, 4, 12, 2, 10, 6, 13, 1, 9, 5, 11, 3, 7),
(8, 4, 12, 5, 9, 1, 13, 6, 10, 2, 11, 3, 7), (8, 4, 12, 5, 10, 1, 13, 6, 9, 2, 11, 3, 7)}.
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