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A permutation 7 of [n] = {1,2,...,n} is a sequence (my, o, ..
omit commas and parenthesis when doing so produces no ambiguity. Let
Sy, denote the set of all permutations of [n]. Now, we define the following
(a sequence of contiguous numbers means at least ‘two numbers’), where
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Abstract

A Roller Coaster permutation is a permutation, along with all
of its subsequences, that changes from increasing to decreasing (and
vice versa) a maximum number of times. We offer a few conjectures
(enumerative as well as structural) along with data describing some
surprising properties of these permutations.

Introduction

for a word z, |x| denotes the number of letters in x:

i(mr) = 4 increasing sequences of contiguous numbers in 7,

(m) = # decreasing sequences of contiguous numbers in T,
d(m) = i(m) +d(m),

(mr) = {7 :7is asubsequence of 7 such that |7| > 3},

(m) = Y id(r).

TEX ()

., Tp). We



For example,

t(2143) = id(2143) +id(214) + id(213) 4 id(243) + id(143)
= 3+2+24+2+2=11and
t(1234) = id(1234) +id(123) + id(124) + id(134) + id(234)

= 1+141+1+1=5

A permutation 7 € S, is called a Roller Coaster permutation if t(r) =
max,eg, t(7). In this paper, we explore properties that enumerate and
characterize Roller Coaster permutations.

2 Results on Roller Coaster permutations

Let RC(n) be the set of Roller Coaster permutations in S,,. If 7 € RC(n),
then the reverse of 7 is also in RC(n). Similarly, 7* = (n+1—m,n+1—
Ta,...,n+1—m,), the ‘mod n+ 1’ complement of 7, is also in RC'(n). Let
tmaz(n) be defined as max,cg, t(m). We have the following experimental
results for n = 3,4,...,24 (conjectured values and lower bounds are in
italics):

tmas © [2,11,37,106, 270,653, 1523, 3480, 7768, 17123, 37405, 81350,
174954, 374409, 798471, 1700036, 3596124 , 7588303,
15970785, 33596706, 70310126, 146867861).

Here, we provide RC(n) for 3 <n <9 (and RC(n) for 10 < n < 13 are
provided in Appendix A):

= {132,213,231,312},

{2143, 2413, 3142, 3412},

{24153, 25143, 31524, 32514, 34152, 35142, 41523, 42513},

{326154, 351624, 426153, 451623},

= {3517264, 3527164, 3617254, 3627154, 4261735, 4271635,
4361725, 4371625, 4517263, 4527163, 4617253, 4627153,
5261734, 5271634, 5361724, 5371624},

RC(8) = {43718265,46281735, 53718264, 56281734},

RC(9) = {471639285,471936285, 472639185, 472936185, 481639275,

481036275, 482639175, 482936175, 528174936, 528471936,

529174836, 529471836, 538174926, 538471926, 539174826,

539471826, 571639284, 571936284, 572639184, 572036184,

581639274, 581936274, 582639174, 532036174, 628174935,

628471935, 629174835, 629471835, 638174925, 638471925,

639174825, 639471825}

=
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A permutation w be called alternating and reverse-alternating if m <
mo > -+ and m > w9 < ---, respectively. Clearly, for n > 3 and © € S,
we have id(7) < n— 1 and

) < 3 (1) 1.

k=3
Based on the data above, one can make the following conjectures:
Conjecture 2.1. If 7 € RC(n), then 7 is alternating or reverse-alternating.

Conjecture 2.2. There exists # € RC(n), such that 71 = |[n/2] and
™ = |n/2] + 1.

Let fi(m) be obtained from 7 by swapping 7; and m,_;41 for t + 1 <
i < |n/2]. For example, f2(43718265) = 43281765. Note that fo(m) is the
plain reverse of 7.

Lemma 2.1. If 7 € RC(n) where n = 2k and Conjecture[2.2 is true, then
fi(m) € RC(n).

Proof. Consider © = (k, w3, 73, ..., -1,k +1) € RC(n) where k = [n/2].
Suppose T = (s1, S2,. .., 8;) is a subsequence of m where 0 < i < n—2. Now
we have the following four cases:

(¢) If 7 involves neither k nor k + 1, then
id(s1, 82, ...,8;) = id(8;, Si—1,...,81).
(#4) If 7 involves only k, then
id(k, s1,82,...,8;) =id(8;, Si—1,-..,81,k) =id(s;, Si—1,---, 81, k+1),

where the last equality results from k£ and k+1 being indistinguishable
in the context. Since the last term in both 7 and fi(7) is k + 1,
subsequences involving k£ in 7 has as many runs as subsequences in
f1(m) invloving k + 1.

(#97) If 7 invloves only k 4 1, then the argument is similar as case (ii).

(iv) If 7 involves both k and k+1, then since k and k+1 are indistinguish-
able, we have id(k, 7, ..., Tn—1,k+ 1) =id(k, mpn_1,...,m2, k + 1).

Therefore, t(f1(7)) = tmax(n) and hence fi(7w) € RC(n). O
Conjecture 2.3. For n > 3,

{4 if n = 2k,

IBCM)I =9 95 where j < k+1  ifn=2k+1.



If n =2k, k > 2, and 7 € RC(n), then using Lemma[2.1 and the fact
that reverse of a Roller Coaster permutation is also Roller Coaster, we get
the following permutations in RC(n):

7T,f0(7T),f1(7T), fO(fl(ﬂ—))’

that is, |[RC'(n)| > 4 if n =2k and k > 2.
For example, given 326154 € RC(6), we obtain
fo(326154) = 451623,
£1(326154) = 351624,
Folf1(326154)) = fo(351624) = 426153.

Conjecture 2.4 (The Odd Sum conjecture). If 7 € RC(n) and n = 2k+1,
then m; + mp,—j41 is odd for 1 < j < k. If 7 € RC(n) and n = 2k, then
T +7Tn7j+1 = 2]€+1 for all 1 g] < k.

Conjecture 2.5. If 7 = (my,m,...,m,) € RC(n), then RC(n) can be
completely determined from 7.

Let g1, (m) be obtained from 7 by swapping m; and m,,_;+1 for each i € L
where 1 <4 < [n/2]. For example, g2 34} (471639285) = 482936175.

If n =2k+ 1, € RC(n), and Conjecture [2.3]is true, then we believe
RC(n) consists of 2/ (j < k+ 1) permutations from the 2**! permutations
obtained by taking L as each element in the set P({1,2,...,k}) (the power
set of {1,2,...,k}), and the ‘mod n + 1’ complement of each of these 2¥
permutations. This algorithm works for n = 3,5,7,9, and 11 where all
Roller Coaster permutations are enumerated, that is,

|RC(2k +1)| = 28+ for k =1,2,3,4,5.
For example, given m = 3517264 € RC(7), we obtain

1. gp(m) = 3517264; gp(m)* = 5371624,

2. gpy(m) = 4517263; g1y (m)* = 4371625,

3. gqay(m) = 3617254; gyay(m)* = 5271634,

4. grsy(m) = 3527164; gysy(m)* = 5361724,

5. gq1,23(m) = 4617253; gq1 93 (m)* = 4271635,

6. g{1,3y(m) = 4527163; gy1,3(m)* = 4361725,

7. g3} () = 3627154; gy2.33(m)* = 5261734, and
8. g{1,2,3(m) = 4627153; g1 2.3} ()" = 4261735.



Given 7 € Sojy1, define:

g(m) = {7, 7" :gp(x) =7 for some L € P({1,2,...,k})}
RC(m) = {T :7 € g(m) and ¢(7) = gI&?é)t(g)} .

Here 7* is the ‘mod 2k + 2’ complement of 7. Note that, RC(n) is
different from RC(w) as the latter is the set of all permutations in g(m)
(instead of S,,) with maximal ¢.

2.1 Fast computation of lower bounds of t,,,,(n)

In this section, we propose a very fast algorithm to compute a permutation
m € S, such that t(7) gives a lower bound for t,4.(n). The following
heuristics act as a guide for the algorithm proposed in this section:

e 7 satisfies Conjecture 2.1,
e 7 satisfies Conjecture[2.2, and

e 7 satisfies Conjecture [2.4.

2.1.1 n=2k:

Lower bound of t,,4.(2k) can be computed from a 7 € Sk_1 by obtaining
a permutation w € So as follows:

k if i =1,
) k4 if § = 2k,
e Tj ifi=2j+1for1<j<k—-1,

n+l—-1p; fi=2jfor1<j<k—1.
Here 7, ; represents m,_;41 wheni=2j+1for 1 <j <k -1
1. For k =7, 7 = 351624 € RC(6) gives
m=(7,11,3,13,5,9,1,14,6,10,2,12,4,8) € S14

with ¢4, (14) > 81350.
We observe that

t(fo(m)) = t(f1(m)) = t(fo(f1(n))) = 81350.



2. For k =8, 7 = 4261735 € RC(7) gives
T =(8,12,4,14,2,10,6,16,1,11,7,15,3,13,5,9) € Sis

with ¢4, (16) > 374409.
We observe that

t(fo(m)) = t(fi1(m)) = t(fo(f1(m))) = 374409.
3. For k=9, 7 = 46281735 € RC(8) gives
T =(9,14,4,16,6,12,2,18,8,11,1,17,7, 13,3,15,5, 10) € Sis

With ¢4, (18) > 1699748.
We observe that

t(fo(m)) = t(f1(m)) = t(fo(f1(m))) = 1699748.
See Section [2.2 for slight improvement in this bound.
4. For k = 10, 7 = 528471936 € RC(9) gives
m = (10,15,5,18,2,12,8,20,4,14,7,17,1,13,9,19,3,16,6,11) € Sy

with t,,42(20) > 7588303.
We observe that

t(fo(m)) = t(f1(m)) = t(fo(f1(7))) = T588303.
5. For k=11, 7 = (5,8,2,10,4,7,1,9,3,6) € RC(10) gives
7= (11,17,5,20,8,14,2,22,10,16,4,19,7,13,1, 21,9, 15, 3, 18,6, 12)

in S with #,,4.(22) > 33596706.
We observe that

t(fo(m)) = t(fi(m)) = t(fo(f1 (7)) = 33596706.

6. For k =12, 7 = (6,3,9,1,11,5,8,2,10,4,7) € RC(11) gives the fol-
lowing m € Sa4

(12,18,6,21,3,15,9,23,1,17,11,20,5, 14, 8,24, 2,16, 10, 22, 4, 19, 7, 13)

with ¢4, (24) > 146867861.
We observe that

t(fo(m)) = t(fi(n)) = t(fo(fr(7))) = 146867861.



2.1.2 n=2k+1:

Lower bound of t,,4,(2k + 1) can be computed from a 7 € S and p € Sk_1
by obtaining a permutation m € Sog41 as follows:

k if i =1,
) k41 if i =2k + 1,
T k41 ifi=2jfor 1<j<k,
P ifi=2j+1for1<j<<k—1.

1. For k=7, 7 = 3517264 € RC(7) and p = 326154 € RC(6) give
7 =(7,11,3,13,2,9,6,15,1,10,5,14,4,12,8) € Sy5

with ta.(15) > 174954,
We observe that

t(m) = ma(x)t(o) = 174954 and |RC(7)| = 128 = 27.
oeg(m

2. For k =8, 7 = 43718265 € RC(8) and p = 3517264 € RC(7) give
T =(8,13,3,12,5,16,1,10,7,17,2,11,6, 15,4, 14,9) € S

with ¢4, (17) > 798471.
We observe that

t(r) = max t(o) = 798471 and |RC(r)| = 128 = 2".

oeg(m)

3. For k=9, r = 471639285 € RC(9) and p = 43718265 € RC(8) give
T =(9,14,4,17,3,11,7,16,1,13,8,19,2, 12,6, 18,5, 15,10) € Sy

with ¢4, (19) > 3596124.
We observe that

t(m) = max t(o) = 3596124 and |RC(7)| = 256 = 2°.

oeg(m)

4. Fork =10,7 = (5,3,9,1,7,4,10,2,8,6) € RC(10) and p = 471639285 €
RC(9) give

7= (10,16,4,14,7,20,1,12,6,18,3,15,9,21,2, 13,8,19,5,17, 11) € Soy
with t,,42(21) > 15970785. We observe that

t(n) = matx)t(a) = 15970785 and |RC(n)| = 128 = 27.
oeg(m



5 For k = 11, 7 = (5,8,2,10,1,7,4,11,3,9,6) € RC(11) and p =
(5,3,9,1,7,4,10,2,8,6) € RC(10) give the following m € Sa3

(11,17,5,20,3,14,9,22,1,13,7,19,4,16, 10,23, 2, 15,8, 21, 6, 18, 12)
with t,,4,(23) > 70310126. We observe that

t(m) = mazx)t(a) = 70310126 and |RC(r)| = 256 = 28.
oeg(m

2.2 Choosing 7 and p optimally

The above algorithm produces a lower bound of t,,4.(n) using a suitable
choice of 7 and p. In the case of ¢,,4,(18), David Callan shows that taking
T = 47261835 € Ss (note that 7 ¢ RC(8) as ¢(7) = 651 < ty4,(8)) gives

T =1(9,14,4,16,7,11,2,18,6,13,1,17,8,12,3,15,5,10) € S5

with #,4,(18) > 1700036, which is slightly better than the bound that
can be obtained by taking a 7 € RC(8). So it is not necessarily optimal
to choose an optimal 7 € RC(k — 1). Again, if n = 2k + 1, then we
may let 7 be the lexicographically least element of RC(k) and let p be the
lexicographically least element in RC(k—1). It remains open how to choose
7 and p optimally.

3 t. considering only subsequences of spe-
cific length

Here we consider a variant of ¢,,,, defined as follows:

X(,m) = {7:71is asubsequence of 7 such that |7| = ¢},
tem) = > dd(r),
TeEX (L)
tmaz(€,n) = 7172%5515(5, ),

RC(,n) = {me€ S, :tll,n) ="tmes(f,n)}.

We have some experimental data on t,,4.(k, n) based on which we have
the following few conjectures:



¢nmn|3 4 5 6 7 8 9 10
312 8 19 38 65 104 154 220

4 3 14 41 93 184 328 541

5 4 22 75 194 430 852

6 5 32 124 363 89%4

7 6 44 191 622

8 7T 58 279

9 8§ T4
10 9

Conjecture 3.1. The lexicographically smallest permutation in RC(n —
1,n) is given by

21 ifi=251<
T 2) ifi=2j—1,1

with (mp—1,mn) = (2k,2k — 1) if n = 2k, and (72, Tn—1,7n) = (2k +
1,2k — 1,2k) if n = 2k 4+ 1. For example, 21436587 and 214365978 are the
lexicographically smallest permutations in RC(7,8) and RC(8,9), respec-
tively.

<k,
<js<k-1

Claim 3.1. Assuming Conjecture 3.1 is true, we have for n > 4,
tmaz(n —1,n) = (n—1)(n — 2) + 2.

Proof. Take the lexicographically smallest permutation 7 € RC'(n — 1,n).
For both the parities of n, 7 is reverse-alternating. Suppose n = 2k. There
are (n'il) = n subsequences of 7 each of length n—1, contribute to t,,q.(n—
1,n) as follows:

tmas(n —1,n) = oo idn)+ S id(r),
r=n\{a}, r=m\{a},
a€{2,1,2k,2k—1} ag{2,1,2k,2k—1}

= 4n-2)+(n—-4)n-3)=n-1)(n—2)+2.
If n = 2k + 1, then the argument is similar as above. O

Fact 3.1 (Myers [4]). The lexicographically smallest permutation in RC(3,n)
is

1. (k,k—1,...,1,2k,2k—1,...,k+ 1) if n = 2k, and
2. (kyk—1,...,1,2k+1,2k,2k—1,...,k+1)if n=2k+ 1.
Lemma 3.1. For n > 3,

tmaz(3,1) { ]]z(k - 1)(7k—2)/3 if n =2k,

(14k? + 3k —5)/6 ifn=2k+1



Proof. If n = 2k, take an optimal permutation 7 = (k,k—1,...,1,2k, 2k —
1,...,k+1) € RC(3,2k). Considering length-three subsequences 7 of T,
we have,

tmaz(3,2k) = t(3,m)
= Y idr)+ Y dd(r)+ Y id(r)
T=abc, T=abc, T=abc,
a>b>c a>b<c a<b>c

k k k
- 9 1 .9 )
(5) 1+ ()2 01)
= k(k—-1)(7k —2)/3.
If n = 2k 4+ 1, take an optimal permutation = = (k,k — 1,...,1,2k +

1,2k,2k —1,...,k+ 1) € RC(3,2k + 1). Considering length-three subse-
quences T of 7, we have,

tmaw(3a2k+1) = t(?’vﬂ-)
= Y idr)+ Y dd(r)+ Y id(r)
T=abc, T=abc, T=abc,
a>b>c a>b<c a<b>c

SORGHERGIRC R
= k(14k* + 3k — 5)/6.
O

Conjecture 3.2 (Myers [4]). For j > 3, tma(j + 1,n) is given by the
following permutation in S,

2] [ 2] 2 B [

Permutations in Conjecture [3.2] are examples of so-called layered per-
mutations.

4 Circular variant of Roller Coaster permu-
tations

Given 7 € Sy, let s;(m) be the permutation obtained from 7 after cyclically
shifting ¢ times to the right. Let us define the following:

Y(n) = O {si(m)} and ct(m) = Z (7).

10



For example, ct(1324) = £(1324) +¢(4132) +¢(2413) +¢(3241) = 9+ 10+
11 + 10 = 40. Let ctypaz(n) be defined as max,cg, ct(m). A permutation
7w € Sy, is called a Circular Roller Coaster permutation if ct(w) = ctmaz(n).

Clearly,
" /n
tmam < : - .
Ctmaz(n) <0y (k> (k—1)
k=3
We have the following experimental results for 3 < n < 13:
Ctmaz ¢ [, 40,168,592, 1783, 5040, 13106, 33472, 82417, 200536, 471628]

Obviously, ¢tmaz(n)/n < tmas(n).

5 Connections with the partition number of
a permutation

Given non-negative integers r and s, a permutation 7 has an (r, s)-partition
if it can be partitioned into 7 increasing subsequences and s decreasing
subsequences. We separate blocks of a partition by ‘|” and in each block,
the relative order of integers is maintained as in 7. For example, 51234
has (1, 1)-partitions 51|234, 52|134, 53|124, 54|123, and 5|1234. As in the
last case, a single number in a block of partition can be considered as a
decreasing (or increasing) subsequence. Define:

P(r,s) = {m:7 has an (r,s)-partition},
p(mr) = min{m:m=r+sand 7€ P(r,9)},
Pmazx (TL) = ;%%f p(ﬂ-)a and
PS(n) = {7:p(7) =Pmaz(n)}.

Here, p(m) is called the partition number of the permutation 7. For
example, 7 = 2143 ¢ P(1,1) U P(0,1) U P(1,0), but is in P(0,2) N P(2,0),
and so p(7) = 2. Wagner [6] proved that given a permutation « € S,,, the
decision problem, ‘can 7 be partitioned into m monotone subsequences?’,
is NP-Complete.

Let m € S,, be called an extension of T € Sy, (where m < n) if 7; = w45
for some ¢t with 0 <t < n—m.

Conjecture 5.1. For 7 € S,,, p(7) < [n/2].

Observation 5.1. Here we present some computed values of py,q.(n) for
3<n<10:
Pmazx - [27 2; 2; 37 37 37 37 4}

11



n  Example permutation ~ PS(n) N RC(n) # 0
3 132 Yes
4 2143 Yes
) 24153 Yes
6 326145 No
7 3517264 Yes
8 43718265 Yes
9 471639285 Yes
10 {5,3,9,1,7,4,10,2, 6,8} No

Question 5.1. For which n, RC'(n) N PS(n) is non-empty?

6 Connections with forbidden subpermuta-
tions

Given m € S, and o € S, with m < n, we say that 7w contains the
subpermutation o if there exists ¢ : {1,2,...,m} — {1,2,...,n} such that
(7)) < m(¢(j)) if and only if (i) < o(j). For example, 532687941
contains 2143 because of its subsequence 5387. If m does not contain 7,
then we say, m avoids 7 (see Kitaev [3] for a comprehensive source of results
obtained so far on pattern-avoiding permutations). Define:

Sp(o) = {me€sS,:mavoids o},

U Salo).

S(o)

Since 2143 has no (1, 1)-partition, any permutation that contains 2143,
for example 532687941, has no (1, 1)-partition. Let F(r,s) be defined as
follows:

F(r,s) = minimal {o:7 € P(r,s) if and only if 7 € S(o)}.

Elements of F(r,s) are called forbidden permutations with respect to r
and s. Stankova [5] observed that F'(1,1) is precisely the set {2143, 3412}.
Kézdy et al. [2] showed that F(r,s) is always finite.

Question 6.1. For which 7 does there exist an n such that RC(n)NF(r,r)
is non-empty?

7 A theoretical question

We observe from the exact and conjectured values of ¢4, (n) that the values
of the ratio tymaz(n + 1) /tmaz(n) for 4 < n < 23, in order, are:

12



[3.364, 2.865, 2.547, 2.419, 2.332, 2.285, 2.232, 2.204, 2.184, 2.175,
2.151,2.140,2.133,2.129,2.115,2.110, 2.105, 2.104, 2.093, 2.089]

Question 7.1. Does the limit

tmaw 1
lim ﬁ

n—oo  tyax (n)

exist and does it equal to 27
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