On Distance Sets in the Triangular Lattice

Tanbir Ahmed

Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

ta_ahmed@cs.concordia.ca

David Jacob Wildstrom

Department of Mathematics
University of Louisville, Louisville, KY 40292

dwildstr@erdos.math.louisville.edu

Abstract

In this note, we investigate a problem on maximum planar dis-
tance sets by Erdés and Fishburn [2], and prove a recent conjecture
presented by Ahmed and Snevily [I] on distance sets in the triangu-
lar lattice. We also enumerate the number of distinct distances in a
hexagonal array in the traingular lattice.

1 Introduction

A point set X in the Euclidean plane is called a k-distance set if there are
exactly k different distances between distinct points in X. Let g(k) denote
the maximum number of points in a k-distance set. For example, it is well
known that g(1) = 3, realized by the three vertices of an equilateral triangle.
Erdés and Fishburn [2] introduce the problem of determining g(k). To date
only six values of g(k) are known: ¢(1) =3, g(2) =5, g(3) =7, g(4) =9,
9(5) = 12, and g(6) = 13. The first five of these were found by Erdés and
Fishburn [2] and the last value was recently determined by Wei [7].
The triangular lattice is defined as follows:

La = {a(l,O)—i—b(;,f) :a,beZ}.

Given positive integer a and non-negative integers r; and ro with 0 <
ro <a+ry—1,let Py, ,, denote a vertically symmetric contiguous and
convex subset of La with ((TQI) — (r;) +a(ry+re)+ri—re+rire+ a)



Figure 1: The triangular lattice La

points, where rows from top to bottom contain
a,a+1l,a4+2,...;a+(r1 —1),a+ri,a+ri—La+r; —2,...,a+r —ro

points, respectively. For X C La, let D(X) denote the number of distinct
distances in X.
In this note, we prove two recent conjectures by Ahmed and Snevily [IJ.

2 Results

Conjecture 2.1 (Ahmed and Snevily[I]). If there exist a pair of points in
P, . r, at distance d from one another, then there exist a pair of boundary
points of P, ., », at a distance d from one another.

2.1 Conjecture 2.1] is true

For brevity, we shall refer to three nonparallel unit vectors in the lattice
as e1, e, and e3; for instance, we might arbitrarily establish e; = (1,0),

e2 = (1/2,v/3/2), and ez = (—1/2,1/3/2).

Definition 2.1. The boundary of a set S C La is the set of all z € S such
that at least one of the six points x + e; is not in S.

Definition 2.2. A nonempty set S C La is cycle-bounded if the boundary
of S is a finite set of vertices {x1,x2,...,x,} such that each |z;1; —x;| =1
and |z1 — z,| = 1.

Proposition 2.1. If a finite set S C La is cycle-bounded, then for any
a,b € S, there are vertices  and y on the boundary of S such that a —b =

x—y.

Proof. Let us start by noting that the case a = b is trivial, and any z = y
would suffice. Henceforth, we shall assume that a # b.

Consider the sequences a,a + e1,a + 2e1,a + 3eq,... and b,b+ e1,b +
2e1,b+ 3eq,.... Clearly, a € S and b € S, but since S is finite, there must
be some first values k and ¢ such that a + ke; and b + fe; are not in S.



WLOG let k < ¢; then we know that a+(k—1)e; € Sand b+ (k—1)e; € S.
Furthermore, since [a + (k — 1)e;] + e; € S, we know that a + (k — 1)e; is
on the boundary of S.

Now, let us color each point of the boundary red or green according to
the following scheme: for a point z on the boundary of S, let z be red if
z+(b—a) €S, and green if z 4+ (b—a) € S.

We may observe that the specific case of z = a+ (k—1)e; is green, since
z+(b—a) = b+ (k—1)ey, which was shown above to be in S. We may also
determine that at least one point on the boundary is red, since, given that
a # b, we know that b — a # 0, so it must have at least one of a positive -
component, a negative x-component, a positive y-component, or a negative
y-component. In these respective cases, let us consider a vertex z € §
of maximal z-coordinate, minimal z-coordinate, maximal y-coordinate, or
minimal y-coordinate. These are clearly on the boundary, as can be seen
by considering the coordinates of e;, —e1, e2, and —es, respectively in the
four cases. However, since z + (b — a) will have greater or lesser magnitude
in the appropriate coordinate, we see that z + (b — a) € S, so this point is
red.

FEach point on the boundary is red or green, with at least one of each,
and the cycle-bounding induces an order on boundary points. Thus we may
assert that there are adjacent points x; and x;4+1 on the boundary such that
x; is green and x;41 is red. Let © = z; and y = z; + (b — a). By adjacency,
we know that x;41 = x; & e; for some j, and by our coloring scheme, we
know that y = x; + (b —a) ¢ S while y £ e; = 2,41 + (b—a) ¢ S. Thus
both x and y are on the boundary, and by construction t —y =a —b6. [

2.2 On the size of D(P;1,,)

Being guided by the discussion in Ahmed and Snevily [I], we compute the
number of distinct distances in P, ,,. Consider the triangular array with
points from P, ;o on the boundary or interior to the triangle, say 1511 r,0,
with vertices
(0,0), (2r,0), and (3r/2, (v/3/2)r).

Let p(4, j) denote the j-th point on the i-th row inside T.41 ¢, considering
the base of T;41,0 as the O-th row. Let f(4, j) be the square of the distance
from (0,0) to p(i, 7). For example, in T3 10,0 (Figure 2), f(2,5) = 52.

It can be observed that the number of points in 7541 0 is r2+2r. Then
forO<i<rand1<j<(2r+1)—2i

fli, ) = (2z'+j—1>2+ (?z)Q

The value of a node p(i, j) may be repeated inside 7,41 0. For example:



e In T11,10,0, we have f(0,8) = f(3,3) =49; f(3,12) = f(7,5) = 247.

e In Ti6150 (see Appendix), we have f(4,20) = f(7,15) = f(12,6) =
637.
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Figure 2: T11 10,0

Observation 2.1. Inside 7541 0, we have the following:

(1) For0<i<rand1<j<2r—2i
f,5+1)=f(i,5)+3i+25—1> f(i, 7).
(5) For0<i<r—1land 3<j<(2r+1)—2i,
fli+1,5-2)=f(i,)) =7 +2 < f(i,])
(#i7) For0<i<r—1land 2<j < 2r—2i,
fl+1,7=1)=f@,5) +3i+j > f(i, )
(iv) For0<i<r—2and4<j<2r—2i
fle+2,5=3)=f(i,5) +3i+3> f(i,7).

Let s(r,,7) be the number of times f(3, 7) is repeated in 1,41 0 above
p(i,7). Hence for r > 1,

r 2r4+1-—2i

|D(Pr+lrr)‘—|D( r+1r0)| = T2+2T_Z Z v(r,i,j)

i=0  j=1
= 724+ 2r — X(r) (say),
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where ( )
1 ifs(rd, ) > 05
v(r,i,5) = { 0, otherwise.

The idea behind using v(r, ¢, j) to indirectly compute the total number
of repeated node values inside 7}.41 o is as follows: suppose the node-value
f(i,7) appears ¢ times in T,11 0 as

f(ioajo)a f(ilvjl)v . '7f(iq—1v.jq—1)7

with ig < i1 < --- < iq_z < iq_1. Then

8(7‘, Z.07.7.0) = q— 1
S(r7i1>jl) = q_2

s(rig—2,jq—2) =

3(r7iq—15jq—1) = 0

Here, v(r,ig,jo) indicates that f(i,) is repeated s(r,ig,jo) times above
p(io, jo); v(r,i1,71) indicates that f(i,7) is repeated s(r,41,71) times above
p(i1, j1); and so on. The over-count that we want to subtract from 72 + 2r
for the node-value f(i,7) throughout T,y; .0 is

-1

o(ryig, ji) = ¢ — 1.
0

Q

=
Il

2.2.1 Computing the exact value of s(r,1, )

Let ¢(i, 7) be the straight line passing through p(i, j) making an angle 27/3
with the positive z-axis. Let V (i, j) denote the vertices on £(7, j) and inside
Ty+1,r0- Note that,
0, 5) = €0, 5 + 23).
Let dmin (4, j, k) be the smallest square of distance of any point in T} 11 0,
on the line 4(i + k, j — k) from (0,0). For example,

dmin(078a 1) = mln{f(laj) p(laj) GV(O+178_1)}
= min{64,57,52,49,48} = 48.
Observation 2.2. It can be observed that for 1 < j < 2r + 1, the number

of nodes inside T;41 .0 on the line £(0,7) is [j/2]. The node values on the
line £(0, j) are

f(oaj)af(]~7] _2)7f(27z7—4)77f(b/2—| - 1,] _2((‘7/2—' - 1))



Also for 0 < i < [5/2] — 2,

Lemma 2.1. For 0<i<r, 1<j<(2r+1)—2,and 1 <k < 2r—(j+
2) + 1,

Ao (5,5, ) = 3(i+1)2, ifj+k=2t4+1,t>1;
winth o B) = B+ )2 —3(i+t) +1, ifj+k=2tt>1

Proof. Here,
Li+k,j—k)=00,7—k+20+k)=£00,7+2i+k)

and
FO0,j+2i+k)=(G+2i+k—1)>.

Note that for i = 0, we have j+ k < 2r 4+ 1. Now, we have the following
two cases:

(1) j+k =2t+1 for some 1 < ¢ < r: Since j+k is odd, we have j+2i+k
odd. So, number of nodes in T} 11, on the line £(0,j + 2i + k) is

[G+2i+k)/2]=[(2t+1+4+2i)/2] =i+t+ 1

Therefore, using Observation [2.2

i+t—1

dwin(i, 3, k) = F0,5+2i+k)— > (flg,(J +2i + k) —2q)
LG 248~ 2q+ 1)
= (2i+j+k—1)27i§1((j+2i+k)—2q72)
q=0 o
= Qi+j+k—1>—(G+2+k-2)(+t)—2 ) ¢
=0

= (2i+2t+1-1)2—(i+1t)>=3(i +1)°

(#) j+ k =2t for some 1 < ¢ < r: Here, the number of nodes in Ty41,0
on the line £(0,j + 2i + k) is [(j + 20 + k)/2] = [(2t +2i)/2] =i + .



Hence,

i+t—2
dwin(i, 3, k) = F0,5+2i+k)— > (f(g,(J +2i + k) —2q)
q=0
—flg+1,(j+2i+k)—2(q+1)))
1+t—2
= @i+j+k—17= > ((+2i+k) —20-2)
q=0

= (2i+2t—1)2—(G+t)(i+t—1)
= 3(i+t)*—-3(i+t)+1.

O
For 0<i<r 1<j<(2r+1)—2and 1<k <2 —(j+20)+1,
define f ( ) > f(i,])
.. o 0, i dmin i7j7k > i’j;
c(é, j, k) { b(i,j, k), otherwise.
where

17 lf]+k:2t+17 f(iaj)_dmill(ia.j7k):y2
with some 0 < y < ¢;
07 1f.7+k:2t+17 f(iaj)fdmin(iaj,k)7éy2
.. for any 0 <y < t;
PETRY = 1 ik = 98, £ ) duinis 4. F) = ()
with some 0 < y < t;
0, 1f]+k = Qta f(iaj)_dmin(i7j7 k) 7é y(y+1)
for any 0 <y < t.

The function c(3,j, k) indicates if f(4,j) is a node value on the line
£(0,7 + 2i + k). Clearly, c(i,4,k) = 0 if dmin(i,7,k) > f(i,7). Otherwise,
f(i,7) may or may not be a node value on the line £(0, j +2i+ k). In either
case, the line £(0,7 + 2i + k) contains node values greater than f(i,j) in
Tr41,r,0. Consider the following cases:

(1) j+k=2t+1for 1 <t < r: There are i + ¢ + 1 nodes on the line
£(0,7 +2i+ k). It can be observed that dpin(i,7,k) = f(i+t,1). The
y-th (0 < y < t) node-value from dpin(, j, k) downwords along the
line £(0,j 4+ 2i + k) is f(i +t —y,1 + 2y). It can be verified that

fl+t—y14+2y)— f(i+t,1) =y%

So, f(i,5) — dmin(i, j, k) = y? for some y with 0 < y < t indicates the
existence of the node-value f(i,j) on the line £(0,j 4 2i + k).



(i4) j+k =2t for 1 <t < r: There are i+t nodes on the line £(0, j+2i+k).
It can be observed that dpin (i, 4, k) = f(i+t—1,2). The y-th (0 < y <
t) node-value from dpin (%, j, k) downwords along the line £(0, j+2i+k)
is f(i+t—y— 1,24 2y). It can be verified that
fG+t—y—1,242y)— fli+t—-1,2) =y(y+1).
So, f(i,J) —dmin(i, 7, k) = y(y+1) for some y with 0 < y < ¢ indicates
the existence of the node-value f(i,j) on the line £(0,j + 2i + k).

Then
2r—(j+2i)+1

srii )= Y cli,jk).

k=1

2.2.2 Asymptotic bound for X(r)
Recall that

r 2r+1-—21
X(r) = zg z; v(r,i,7).
i= j=

We get the following experimental values:

T 5 6 7 8 9 10 11 12 13 14 15
X(r) 1 2 4 6 9 11 14 18 23 28 33
T 17 18 19 20 21 22 23 24 25 26 27
X(r) | 46 52 60 68 78 88 98 108 118 130 144
T 29 30 31 32 33 34 35 36 37 38 39
X(r) 168 184 201 217 230 248 264 280 304 323 342
r 50 60 70 80 90 100 120 150 200

X(r) 608 924 1312 1775 2310 2913 4363 7124 13320

x(r) seems to grow far faster than early indications would suggest.
Among small values of r, multiple points within the triangle at equal dis-
tance from (0,0) seem quite rare, but experimental data suggests that du-
plications may well be of quadratic frequency. This is in fact the case, as
can easily be determined from a reconsideration of a known asymptotic
result. The ability of a natural number to be the square of a distance in
a hexagonal lattice was characterized by Marshall [6] as equivalent to pos-
sessing no prime factor congruent to 2 modulo 3 an odd number of times;
these numbers are called Lischian after the economist Augustus Losch [5].
Except for the modulus and residue in that congruence, this criterion is
identical to Fermat’s characterization of numbers which are sums of two
squares.

Fermat’s result is integral to the proof of Landau [3], presented in an
elementary form in [4], that the number of sums of two squares which are

less than n is
n

n
K (0]
Vlogn * <10g3/4n)




for constant

1 1
K= |- .
L
p=3 (mod 4)
Landau’s line of argument is easily adaptable to a different modulus and
residue, from which the density of the Loschian numbers may be shown to

be

n n
L 0
V1ogn * <10g3/4n)

for constant

2V3 _, P

Since P41, lies entirely within a circle of radius 2r and entirely con-
tains a circle of radius v/3r, we may say with certainty that |D(Prt1,r0)|
lies between the number of Loeschian numbers less than or equal to 3r2
and the number of Loeschian numbers less than or equal to 472. Thus,

mod 3)

372 4r2 2
L <D < L 40 ()
V/log(3r2) log(4r2) log3/4 r
Since x(r) = r?+2r — D(|Prs1.0+|), it is thus abundantly clear that x(r) =

2 _ r?
e+ 2r O(\/@)
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