Welcome to the Research Homepage of Tanbir Ahmed, Ph. D.

Mathematics / Computer Science Research

PublicationsThesesInteger SequencesReviews
Publications • Back to top
Math Subject Classifications: Combinatorics (05-XX), Number Theory (11-XX), Computer Science (68-XX), Geometry (51-XX), Convex and Discrete Geometry (52-XX), Linear and multilinear algebra; matrix theory (15-XX), History and biography (01-XX)
022. On the \(3\)-color off-diagonal generalized Schur numbers \(S(3; 2, k_1, k_2)\)
Tanbir Ahmed, Luis Boza, Maria P. Revuelta, and Maria I. Sanz, Submitted to a journal.
021. On the \(3\)-color off-diagonal generalized Schur numbers \(S(3; 2,2,k)\)
Tanbir Ahmed, Luis Boza, Maria P. Revuelta, and Maria I. Sanz, Submitted to a journal.
020. Growth of Rational Languages related to Self-Similar Algebras
José M. R. Caballero and Tanbir Ahmed, submitted to a journal.
019. Lower bounds and exact values of the \(2\)-color off-diagonal generalized weak Schur numbers \(WS(2; k_1, k_2)\)
Tanbir Ahmed, Luis Boza, Maria P. Revuelta, and Maria I. Sanz, Procedia Computer Science, 223 (2023), 403-405. XII LAGOS, 2023
018. Exact values and lower bounds on the \(n\)-color weak Schur numbers for \(n = 2, 3\).
Tanbir Ahmed, Luis Boza, Maria P. Revuelta, and Maria I. Sanz, The Ramanujan Journal, 62 (2) (2023), 347-363. , Open access, (2023).
017. Thue-Morse substitution and self similar groups and algebras
Laurent Bartholdi, José M. R. Caballero, and Tanbir Ahmed, Algebra and Discrete Mathematics, 34 (1) (2022), 1-14.
016. A Family of doubly stochastic matrices involving Chebyshev polynomials.
Tanbir Ahmed and José M. R. Caballero, Algebra and Discrete Mathematics, 27 (2) (2019), 155-164. MR3982300.
015. Power Sum Polynomials as Relaxed EGZ Polynomials.
Tanbir Ahmed, Arie Bialostocki, Thang Pham, and Le Anh Vinh, Integers 19 (2019), A49. MR4017190.
014. On Generalized Schur Numbers
Tanbir Ahmed and Daniel Schaal, Experimental Mathematics, 25 (2) (2016), 213-218. MR3463569. (PDF)
013. On Colouring Integers without t-AP distance sets
Tanbir Ahmed, Algebra and Discrete Mathematics, 22 (1) (2016), 1-10. MR3573541. (PDF)
012. On Distance Sets in the Triangular Lattice
Tanbir Ahmed and David Wildstrom, Bull. Inst. Combin. Appl. 75 (2015), 118-127. MR3444619. (PDF)
011. Remembering Hunter Snevily
Tanbir Ahmed, André Kézdy, and Douglas B. West, Bull. Inst. Combin. Appl., 73 (2015), 7-17. MR3331369. (PDF)
010. On the van der Waerden numbers \(w(2; 3, t)\)
Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily, Discrete Applied Mathematics, 174 (2014), 27-51. MR3215454.
--- Recently (2022), Ben Green in New Lower Bounds for van der Waerden Numbers, disproved the much-speculated conjecture \(w(2; 3, k)=\cal{O}(k^2)\) (originally formulated by Ron Graham in around 2004, and subsequently supported with data by others and ourselves) by constructing a red-blue coloring of \(1,2,\ldots,N\) with no blue arithmetic progression of length 3 and no red arithmetic progression of length \(e^{C(\log N)^{3/4}(\log\log N)^{1/4}}\), and consequently showing that \(w(2; 3, k)\) is bounded from below by \(k^{b(k)}\) where \(b(k) = c\left({\log{k}\over\log\log{k}}\right)^{1/3}\). See Erica Klarreich's Quanta Magazine article Mathematician Hurls Structure and Disorder Into Century-Old Problem.
--- (See D. E. Knuth's Volume 4, Fascicle 6: Chapter on Satisfiability)
--- (See Wikipedia entry of Van der Waerden numbers for my contributions in that list)
009. The α-labeling number of comets is 2
Tanbir Ahmed and Hunter Snevily, Bull. Inst. Combin. Appl., 72 (2014), 25-40. (PDF) MR3362514.
--- (See Joseph A. Gallian's A Dynamic Survey of Graph Labeling)
008. Sparse Distance Sets in the Triangular Lattice
Tanbir Ahmed and Hunter Snevily, Electronic Journal of Combinatorics, 20 (4) (2013), P33. MR3158272.
007. Unique Sequences Containing No k-Term Arithmetic Progressions
Tanbir Ahmed, Janusz Dybizbański, and Hunter Snevily, Electronic Journal of Combinatorics, 20 (4) (2013), P29. MR3158268.
006. Some properties of Roller Coaster Permutations
Tanbir Ahmed and Hunter Snevily, Bull. Inst. Combin. Appl., 68 (2013), 55-69. (PDF) MR3136863.
--- (See Biedl et al., Rollercoasters: long sequences without short runs., SIAM J. Discrete Math. 33, No. 2, 845-861 (2019).
--- (See two conjectures in the Open Problems Garden)
--- (See William Adamczak A Note on the Structure of Roller Coaster Permutations, preprint, May 2016)
--- (See William Adamczak, Jacob Boni Roller Coaster Permutations and Partition Numbers, preprint, March 2017)
005. Strict Schur Numbers
Tanbir Ahmed, Michael G. Eldredge, Jonathan J. Marler, and Hunter Snevily, Integers, 13 (2013). A22. MR3083484.
004. Some more van der Waerden numbers
Tanbir Ahmed, Journal of Integer Sequences, 16 (2013), Article 13.4.4. MR3056628.
003. On computation of exact van der Waerden numbers
Tanbir Ahmed, Integers, 12 (3) (2012), 417-425. Online version: 11 (2011), A71. MR2955523.
002. Two new van der Waerden numbers: w(2; 3, 17) and w(2; 3, 18)
Tanbir Ahmed, Integers, 10 (2010), 369-377, A32. MR2684128.
-- First applied DIVIDE-AND-CONQUER Distributed SAT-Solving to compute these numbers in around 2009.
001. Some new van der Waerden numbers and some van der Waerden-type numbers
Tanbir Ahmed, Integers, 9 (2009), 65-76, A06 MR2506138.
--- (See tawSolver 1.0: an efficient implementation of the DPLL Algorithm.)
Theses • Back to top
Some Results in Extremal Combinatorics [PDF]
Ph.D. Thesis, 2013, Concordia University.
Advisor: Prof. Clement Lam
An Implementation of the DPLL Algorithm [PDF]
M. Comp. Sci. Thesis, 2009, Concordia University.
Advisor: Prof. Vašek Chvátal

Integer Sequences • Back to top
Van der Waerden numbers \(w(2; 3, n)\) for \(n \geqslant 3\). Only values for \(n=3,4,\ldots,19\) are known
A171081: 9, 18, 22, 32, 46, 58, 77, 97, 114, 135, 160, 186, 218, 238, 279, 312, 349
Van der Waerden numbers \(w(2; 4, n)\) for \(n \geqslant 4\). Only values for \(n=4,5,\ldots,9\) are known
A007784: 35, 55, 73, 109, 146, 309
Van der Waerden numbers \(w(2; 5, n)\) for \(n \geqslant 5\). Only values for \(n=5,6,7\) are known
A217037: 178, 206, 260
Van der Waerden numbers \(w(3; 3, 3, n)\) for \(n \geqslant 3\). Only values for \(n=3,4,5,6\) are known
A217235: 27, 51, 80, 107
Van der Waerden numbers \(w(j+2; t_0,t_1,...,t_{j-1}, 3, 3)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217005: 9, 14, 17, 20, 21, 24, 25, 28, 31, 33, 35, 37, 39, 42, 44, 46, 48, 50, 51
Van der Waerden numbers \(w(j+2; t_0,t_1,...,t_{j-1}, 3, 4)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217058: 18, 21, 25, 29, 33, 36, 40, 42, 45, 48, 52, 55
Van der Waerden numbers \(w(j+2; t_0,t_1,...,t_{j-1}, 3, 5)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217059: 22, 32, 43, 44, 50, 55, 61, 65, 70
Van der Waerden numbers \(w(j+2; t_0,t_1,...,t_{j-1}, 3, 6)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217060: 32, 40, 48, 56, 60, 65, 71
Van der Waerden numbers \(w(j+2; t_0,t_1,...,t_{j-1}, 4, 4)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217007: 35, 40, 53, 54, 56, 66, 67
Van der Waerden numbers \(w(j+2; t_0,t_1,...,t_{j-1}, 4, 5)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217236: 55, 71, 75, 79
Van der Waerden numbers \(w(j+2; t_0,t_1,...,t_{j-1}, 4, 6)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217237: 73, 83, 93, 101
Van der Waerden numbers \(w(j+3; t_0,t_1,...,t_{j-1}, 3, 3, 3)\) with \(t_0 = t_1 = ... = t_{j-1} = 2\).
A217008: 27, 40, 41, 42, 45, 49, 52

Reviews • Back to top
In Math. Reviews
MR3274878, MR3231981, MR3194752, MR3190574, MR3134264, MR3063975, MR3062784, MR3061011
In Computing Reviews
CR141762, CR141855, CR142155, CR142308, CR142738, CR142894
Referee services
American Mathematical Society (AMS) Mathematics of Computation • Bulletin of the Korean Mathematical Society (KMS) • Discrete Applied Mathematics • Integers • Rocky Mountain Journal of Mathematics • The Ramanujan Journal